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ON THE NUMERICAL SOLUTION
OF A SYSTEM OF THIRD ORDER
ORDINARY DIFFERENTIAL EQUATIONS
BY SPLINE FUNCTIONS

Z. Ramadan (Cairo, Egypt)

Abstract. The purpose of this paper is to construct spline function
approximations for solving the system of differential equations

/

y"' = e,y 2,2), 2" = faoz,y,9,2,2)
with y(i)(zo) = yg) and z(')(zo) = zgi), where 7 = 0(1)2.

The approximating functions used in the method are polynomial splines.
It is shown that the method is a one-step method O(h**7) in ¥ (),

zD(z), i = 0(1)2 and O(h*¥7+3-9) in y(9(z), 2(9(z) where ¢ =
= 3(1)r + 3, also shown that the method is stable.

1. Assumptions and procedurcs

Consider the system of differential equations

(1.1) ' = fieyv.5 ), ¥ (zo) = o,

(1.2) 2" = fo(z.y, v 2, 2"), z(‘)(:co) = z((,i),

where fi, f € C7([0,1] x R*Y), i = 0(1)2.
Let A be the partition

A 0=2<z21< .. < <Tpp1<...<Tp =1,
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where 2p4+1 — 2 =h < 1land £ =0(1)n — 1.
Let L; and L, be the Lipschitz constants satisfied by the functions
fl("), éq) respectively, i.e.

Ifi(q)(r) Y1, ylljzly Z;) - fi[‘q)(zv Y2, yIZ) 22, Z’Z)I S

(13) |
<Li{ly —wal + 1 -l +la - ml+ s =2l §, i=1,2

for all (z,y1,¥1,21,21), (,Y2,¥5,22,25) in the domain of definition of the
functions flm, ._Eq), where ¢ = 0(1)r.

The functions ff"), i = 1,2 and ¢ = 1(1)r are functions of z,y,y, 2,7
only and they are given from the following algorithm.

Set f,-(o) =fi (z,y, ¢, 2z,2') and if £97") are defined, then

LT SN SR ) Ol ]

O dy v oy’ v 0z + 0z

f(q) =
1
Then, we define the spline functions approximating y(z) and z(z) by Sa(z)

and Sa(z), where
(1.4)

Sa(z) = Se(x) = Sp—1(zk) + Sh_y(z1)(z — z4) + S;c,—l(zk)(z —2!131;)2 +
T . _ . r—T +3
+Jz=:0f9) [xk,Sk_l(l'k),SL_l(zk);S'r-l(l'k)xS;c—l(‘tk)] %
and
(1.5)
r—1:)2
Sa(z) = Si(z) = Sk-1(ze) + Spoy(zk)(z — 2x) + S;c—l(mk)—( 2';”) +
+ Zfél) [l.k)Sk_l(:l:k),S;c_l(zk),Sk—l("ck)rs‘;:—l(zk)] %——zlg;lii-’

j=0

where S(_i{(:co) = ygi), Sg{(zo) = z(()i), t=0(1)2.
By construction, it is clear that Sa(z), Sa(z) € C?([0, 1] x RY).
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2. Error estimations and convergence

For all z € [zk,zk4+1], k = 0(1)n — 1, let the exact solution of (1.1) and
(1.2) be written in the following forms

r+2 (7) r+3
. Y (r4+8) ¢\ (& — Tk)
2.1 —ax) + - .
(21) ) = 3 B (o - N
and
o L)) ; (r43) (z — z¢)™*3
(2.2) z(z)_jZOT—(x—zk) +z (mk )_(7*23_)!_—’

where &, mk € (zk, Ze+1) and & = 0(1)n — 1.

Before we proceed to discuss the convergence of these spline approximants,
we state first the following notations

e(z) = ly(2) ~ Sa(®)l,

ex = |yx — Sa(zi)],

(z) = |2(z) - Sa(z)!,

&x = |z — Sa(zi)l,
fl(]lg = gj)[l‘k,Sk-l(wk)vS;c-l(x’c)’Sk"l(zk)’g;_l(mk)]’
f9 = £k, Se-r(za), Shoy (), Se-1(ze), Sioa(w4)),
19 = fDlag, e, vh, 2,24,

‘(J) = féj)[zk)yk)yk 2k, ZL]

where j = 0(1)r and k = 0(1)n — 1.
Throughout this work we will consider the general subinterval

Iy =[xk, zk-1], k=0(1)n— L

First, we estimate |y(z)— Sk(z)|. Using (1.4), (2.1), the Lipschitz condition
(1.3) and the notations (2.3) we get

(2.4) e(z) < Jye — Sk-1(zk)|+
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|z - |2

+ 0k = Sea (@)l - o = zel + 1y (2r) =S¢y (=) - ——+
G+3) _ | =z sy ] 2= wkl’“’ <
+Z| -flk ( +3)! + y (fk) 1,k (T+3)' =
hZ
< ek + hep + 51 —er+
r=1 r+3
(G+3) _ (G) (r+3) (] _h
+Y| ‘ + [y er) — .
5-:3 " (J+3)' e ]
If we let . '
Py - 59,
then, using (1.3) and (2.3), we get
(25) P< Li(ente, +é+8)
Also, let
]3 = 1y(r+3)(£k) — fEL)
then, using (1.3) and (2.3), we get
(2.6) P<w (674, h) + Li(ex + ¢+ + &),

where w(y(""a), h) is the modulus of continuity of the function y(7+3),

Using (2.5) and (2.6) and noting that

=l pi+2
Z—’—l‘f‘—?’)l < h_9 <e,
i=o '
we can easily get
(27)
h? r+3
e(z) < (14 coh)ex + coheg + (1 + co)hel, + cohél, + ek + o 3)1w(y(r+3) h),

where ¢ = L, (c: + ) 1s a constant independent of A.

o
(r+3)!
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In a similar manner, using (1.5), (2.2), the Lipschitz condition (1.3) and
the notations (2.3), it can be easily shown that
(2.8)
h(r+3)
(r+ 3)!

h?
é(z) < crhex + (1 +c1h)éx + crhe + (1 +c1)hé} + —¢f + w(2(73) h),

2!

where w(z("+3) h) is the modulus of continuity of the function z('+3) and ¢; =

=Ly (e + (—1.:13—)|> is a constant independent of h.

Now, we are going to estimate |y (z) — s (z)| and |2/(z) - S'k(z)|.
Using (1.3)-(2.3) and noting that

T, Rt

et
Z:O(j+2)!<e <e,

we can easily get

T4+2
(2.9) €'(z) < cahex + cohéx + (1 + cah)el + cahé), + ke + o 2)|w(y('+3), h)
and
hr+?
(2.10) é’(z) < czher +c3héy +(:3h€2: +(1 +C;3h)é;n +hég+ mw(z(’+3), h),

1 1
where ¢ = L, (e + m) and ¢3 = Lo (e + m) are constants
independent of h.

We now estimate |y (z) — S («)| and |2 (z) — S} (z)].

Using equations (1.3)-(2.3) and utilizing the inequality

r—1

hi
G+

<e

i
o

J

we can see that

1
w(y(’+3), h)

hrt
(21]) 6”(1‘) < cqher + cahér + Cq’le;c + C:}"i,é;c + 6;: + (7‘ T 1),
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and

1
w(z"+3) ),

+
(2.12) €"(z) < cshex + cshéx + cshey + cshéy + & + (rh+ o

where ¢4 = L (e+ (r——:T)-'> and ¢5 = Lo <e+ (rTll)') arc constants
independent of h.

To complete the convergence proof, we introduce the following definition
of the matrix inequality

Definition 1. Let A = [a;;], B = [b; ;] be two matrices of the same
order, then we say that A < B iff

(1) a; j and b; ; are nonnegative,
(i) a;j < bij Vi, j.

In view of this definition and if we use the matrix notations

E(z) = (e(z) &z) €(x) () e'(x) &'(x)”

and
Eyp = (ex & ¢} & el €))7, k=0(1)n-1,

we can write the estimations (2.7)-(2.12) in the following form

(2.13) E(z) <(I+hA)E; + K *lw(h)B,
where
co ¢ l+co co /200 1/(r + 3)!
c1 (5} 1+Cl 0 1/'2' 1/(T+3)'
A= |2 © ¢y ¢y 1 B = 1/(r +2)!
- c3 C3 c3 c3 0 1 ) - 1/(7‘ + 2)' ’
Cq4 C4q C4 Cq 0 0 1/(1‘+ 1)'
cs Cs Ccs cs 0 0 1/(r+1)!

I is the identity matrix of order 6 and

w(h) = max {w(y('+3), h). w(z(r*3), h)} .

Next, we give the following definition of the matrix norm.
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Definition 2. Let T = [7;;] be an m x n matrix, then we define

n
Tl = mfxz |7ij -
Jj=1

According to this definition, we get
@14)  E@)] = max{e(z), &(a), ¢(2), é(a), (=), &"sf(x)} -

Since (2.13) is valid for all ¢ € [z, £k+1], £ = 0(1)n—1, then the following
inequalities hold true
IE@)I < (I + ALAIDIE + A" w ()| BIl,
(1+ RIADIEE < (T + AlIAD Be-1ll + ™ w(R)IBII(L + hl|A]),
(L+ RIAID 1 Br-ill < (T + AIAID (I Be—2ll + R w (R BII(1 + RIIAI)?,

(L + ALAIDHI Bl < (T + AlLAI I Eoll + AT w(BIBII(L + hIIAID*.

Adding L.H.S. and R.H.S. of these inequalities and noting that ||Eo|| = 0,
we get
IB@)| < coh"w(h),
Bl
Al
Thus using (2.14), we get.

where ¢g = (e"“‘” - 1) is a constant independent of h.

e)(2) < csh"w(h) = O(h*7),

(2.15) e(c) < ceh™w(h) = O(h®*T),
where i = 0(1)2.

We are going to estimate |y(%'(z) — S,(cq)(a:)|, where ¢ = 3(1)r + 2.
Using (1.3), (1.4), (2.1), (2.3), (2.5), (2.6) and (2.15), we get

r--1 . R j+3—¢
(0) ~ LG ) e — ekl
W@ -S0@I< DL W - BT ot

j=5-3

- r+3-¢
N OO 1 . L
+ ly (fk) fl,k (7'+ 3 _ q)|

< erh™379u(h) = O(he+T+3-9),
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where ¢7 = 4L;cg (e + is a constant independent
of h.

Similarly, using (1.3), (1.5), (2.2), (2.3), (2.5), (2.6) and (2.15), it can be
shown that

1
(r+3—q)?) MG

129(z) — 59 (2)] < esh™ I (h) = O(h*+T+7-1),

)+ 773
(r+3-9)t)  (r+3-79)

s a

where ¢ = 3(1)r + 2 and cs = 4Lyce (e+

constant independent of A.
For the case ¢ = r + 3, we have

W+ )~ 57 = @) - AT <
< -y 1A - A <
< cou(h) = O(h*),
Similarly,
120+3)(2) — 89| < eyw(h) = O(R®),
where ¢c9 = 1 +4Ljcs and ¢19 = 1 + 4L2c6 are constants independent of h.

Thus, we have proved the following

Theorem 1. Let Sa(z) and Sa(z) be the approzimate solutions to prob-
lem (1.1)-(1.2) given by the equations (1.4)-(1.5), and let fi fo € C™ ( [zo, Tn] %
xR*), then for all z € [z, zx41], k = 0(1)n — 1, we have

V(@) = 5(@)] < CRrw(h),
20(z) - §(2)| < Chw(h),
¥(z) = (@) < KW u(h)
and
|20(2) = $(@)] < K*h+2 T w(h),
where 1 = 0(1)2, j = 3(1)r+3, C,K and K* are constants independent of h.
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3. Stability of the method

The stability concept for a one-step method means that small perturba-
tions in the initial data for the numerical method will result in small changes in
the numerical values, independent of the grid size h of the numerical method.

To study the stability of the method given by (1.4)-(1.5), we change Sa(z)

by Wa(z) and Sa by Wal(z), where
(3.1)

_ 2
Wa () = We(@) = Wie(ze) + Wioy(o0)(e - ) + Wiy (o) S 704
+Xr:f(j){a: Wi-1(zx), Wi_o(2x), We-1(zi), Wy (zk)}."_‘_’”’“_'j_)'f
a1 U T e B b e G+ 3
and
(3.2) 2
WA(IB) = _V_V—k(z) = Wk_l(rk) + W;;_l(:ck)(z - zk) +W:_1((L’k)£x—¥k—)—+
+Zr:f‘“{z Wi—1(zk), Wi_1(ze), Wi_1(zx), Wy (z)}"“’_"_’"_“ﬁ
P ey We—1(Tk ), Wi _1(Zk), Wk—1(Zk), Wir_1(Tk R

=0

where W) (zo) = Yos (i) W(_iz(:ro) =20, i=0(1)2.

We define the following notations

e(z) = |Wa(z) — Sa(z)l, ex = |Wal(zk) - Salzk)l,

(3:3) E(z) = [Wa(z) - Sa(z)l, & =|Wal(zx) - Salzs)l,

fO) = £z, Weos(an), Wiy (20), Wia(2e), Wiy (z)]

and ) . .
£9) = £ ek, Waoa(20), Wiy (1), Wea(k), Wiy (21)]-

For all z € [zk, Tk41], k = 0(1)n — 1, by using (1.4), (3.1), we get
(34) Wa(z) - Sa(z)| <

< |Wi-1(zx) = Sk—1(ze)l + [We_y(zk) = Sk_q(zi)llz — ze |+
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|z — zp /3

+|W£’_1(1}k)—5 1(1: )l -* Z,f(” 1(112 (J+3)'

Now, let
(35) Vo= |0 - A
Then, from (2.3), (3.3) and the Lipschitz condition (1.3), we get

(3.6) Vi < Lu(ex + €5 +éx +€5)-

Thus, (3.4) gives
2

‘ h
(3.7 e(z) < (14 doh)ex + dohér + (1 + do)hel, + dohéy, + 51 —€Y,

where dy = Lye is a constant independent of h.

In a similar manner, by using (1.4), (1.5), (3.1)-(3.3) and the Lipschitz
condition (1.3), it can be shown that

h2
&(z) < diher + (L + di1h)ép + dihel + (1 + d1)hé + — 51 —&y,

(3.8) ¢'(z) < doheg + dohéy + (1 + doh)sy + dohé), + hej,
€'(z) < dyher + dihér + dihey + (1 + dih)& + héY,
e’ (z) < doheg + dohéx + dohe} + dohé + €}

and
E_”(.‘L‘) < dihey + di1hér + dlhii: + dlhff;c + 5_";:,

where d; = Lje, is a constant independent of h. If we put

E(z)=(e(z) &z) €(2) #(x) () &'(x)"
and
(3.9) Ex=(ex & €, & ¢€f g7, k=01)n-1,
then, from (3.7)-(3.9), we get the following inequality

(3.10) E(z) < (I 4+ hA)Ey,
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where

dg dog 1+4dy do 1/2' 0
dl d1 dl 1 + d] 0 1/2'
do do do do 1 0
dy dy dy d; 0 1
do do do do 0 0
d, d; dy d; 0 0

h
I

and I is the identity matrix of order 6.

Since (3.10) is valid for all z € [zk, zx+1], £ = 0(1)n—1, then the following
inequalities hold true

[E@)I < (1+AIADIEK],

(1+hIADI Ll < (1+ AIIAD | Eell,

(1 + AIAIDMIEall < (14 RILAINS* Eol.

Adding L.H.S. and R.H.S. of these inequalities, we can easily get
(3.11) 1£()I| < ellEoll,

where ¢; = ell4ll is a constant independent of h.

Applying Definition 2, we get
e(z) < e | Eoll
and

(3.12) £9(z) < el Eoll,

/Il

where || Eol| = max{lyo 95|, luo—'l, v » l20—25 1, |20 - 25", |20 — "1}

and i=0(1)2.
We are going to estimate |V, (‘)(r) S(q)(z)] where ¢ = 3(1)r + 3.
Using (1.4), (3.1), (3.6) and (3.11), we get

T — [ t3-e

@ o) () _ (:)I
(3.13) Wa'le) = 5 (m)‘ ]Xq:a’f ‘ (G+3-9)!

4| Eoll,

IN

IA
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where d* = 4L ec; is a constant independent of h.

In a similar manner, using (1.5), (3.2) (3.11), it can be shown that
(3.14) W (z) - S9(@)| < &1 Eoll

where d* = 4Ljec; is a constant independent of h and ¢ = 3(1)r + 3.
Thus, we have proved the following

Theorem 2. Let (Sa,Sa(z)) given by (1.4)-(1.5) be the approzimate
solution to problem (1.1)-(1.2) with the imitial conditions y)(zg) = i’
and z()(zy) = zgi), and let (Wa(z), Wa(z)) given by (3.1)-(3.2) be the
approzimate solution for the same problem with the initial conditions y(*) (o) =

= ys(i), 20 (z4) = zg(i), i =0(1)2, then the inequalities
W(e) - SP(@)] < el

and
W) = S8 (@)] < kil

hold true for all x € [xx,zx41], k =0(1)n—1 and ¢ = 0(1)r+3, r € It where
¢, k are constants independent of h and

| Eol] = max{lys” — 3], (257 = %)), i =0(1)2.
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