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APPROXIMATION AND STABILITY OF A
MATHEMATICAL MODEL OF RIVER POLLUTION

Gy. Strauber (Dunatjvaros, Hungary)

1. Introduction

In this paper we consider the following system of differential equations

861 (9('1 6261 _ 1 .
(1) W_‘Lv(?_.’t_])—(()?—;‘;(cz_Cl)—kCI,
0 1
(2) (a% = T_z(CI —Cz)—kCg.

This is a so-called dead-zone model which describes the transport of pollution
in rivers (or in soil) taking into account also the dead zones of the river (mud,
holes, breakwaters). A certain amount of the concentration is retained from
the main flow leading to a slower decrease of the pollution.

In (1), (2) the following notations are used:
¢1(z,t) - concentration of the pollution in the main flow (g/m3);
ca(z,t) - concentration of the pollution in the dead zones (g/m3);
v - velocity of the main flow (m/s};
D - coefficient of the longitudinal dispersion in the main flow (m?/s);

71 - characteristic time of the back-diffusion from the dead zones into the main
flow

(s);
Ty - characteristic time of the diffusion from the main flow into the dead zones
(s);

k - chemical decay constant (1/s).

The initial and boundary conditions are
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ci(z,t)=c(z) 0<z<L, t=0, i=172
9ez.Y) Lo, s=1, t=0,
Oz

where L is the considered length of the river.

ci(z,t)=£(1), z==0,

In this paper we investigate - based on [6] - the stability, unicity and
existence of the solution of (1), (2), (3). We analyse some difference schemes
(classical 6-point schemes as well as modified box-schemes) approximating the
system of differential equations, their conditions of mean square stability. Here
the work is based on [1-4].

For numerical experiments testing the performance of the difference
schemes described below see [5].

2. Existence, unicity and stability of the continuous model

0

Definition. Let V := W}(0,L), H := L2(0,L), c1,cs is a weak solution

of (1),(2) with homogeneous boundary condition and with nonhomogeneous
right-hand side, if

(4) c:=(c1,c2) € WE(0,T; V x H, Hx H) and
(5) (), waxu +ale(t),u)=(fiu)pxu YV u:=(u,u) €V xH

for almost every t € (0,7").
The initial conditions are

(6) ¢(0) = (c1(0),¢c2(0)) € Hx H
and the right-hand side is

f={(f1,f2) € L2(0.T.H x H).
In (5) let

(M (@), Wuxn = i"-(c(-z),u)”x}, =2

d
pm T (riciu; + meus)de,

o



Approximation and stability of river pollution 105

L
a(c(t),u) ::/ (Tl v Uy -)—Cl— D lﬁl?ﬂ_,.
(8) / dz Oz Oz

+ (Cl - Cz)ul - (Cg - cl)u2 + mkciuy + mkeaus ) dz.

(We can get the equation (5) from the system (1), (2), if we multiply (1) by
niuy, (2) by mus, add and integrate over z.)

We also use the following norm

L 2
9) llwll} g / ( (—‘) +w'§’) dz, w€V x H,
0

To investigate the existence and unicity of the weak solution of (1), (2) we
use Theorem 23.A of [6]. On the basis of this Theorem we have to prove
that @ : (V x H) x (V x H) - R is a bilinear, bounded and strongly
positive functional, and then there is exactly one weak solution of (1), (2)
with homogeneous boundary condition.

It is trivial that a is a bilincar functional. a is said to be bounded if

lae, u)| < Axlfe|fllu |,
0<AL€ER, ueVxH, c=clt)eVxH

for almost every t € (0, T).

To get the required upper estimation we use the Cauchy-Schwarz - the
Cauchy - and the e-inequalities
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1/2

L o\ 2
< [/ mvu? + Dy (%) +u? —ul 4 mku? 4 Tzkug) dzjl
0
y ] dci\?
l: / ( <—Ci) + Dny (%) -+ (Cl - 02)2 + (02 - 01)2+
0

1/2
+ rike? 4 Tokel ) ﬂ-'l‘] < Aillullvxnllellv xa

where

A= max{Vnk+4, Va@+D), Vnk+d, Vn+h+l1)
Hence a 1s bounded. a is said to be a strongly positive functional, if
a(c, ¢) > Aalle|)?, 0<A,€R, c:=c)eEVxH

for almost every t € (0,T).
To prove this lower estimation we use

) L
afc, c) _—7'1vcl (L,1) +/DT1 <f1> dz + /(Cl ~ c2)’dz+
K

(10) L L
—+—/7‘1kcfd1:+/rgkcgd;z‘,
0 0
since
I3 19c? 1,]*
c
Clgrlih—_- / 5—6%1(11': [—cf] ci(L,1)
o 0
If k> 0 then

a(c,¢) 2 Azllely xpr

with the norm (9), and with
Az = min('rlk, Tzk, DT]).

If k = 0 then we use the well-known fact that V is continuously embedded into
L3(0,L) and V is continuously embedded into C[0, L].
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Lemma. Ifw € V and (0) = 0, then

y L? 12 fow)?
9 w
||w”§1 = /‘U)le' S —-2—111)]% = -5-/ (—5;) dﬂ:.
0

0

Proof. Let w be continuously differentiable. Then

z

w(z) = / %ZL:—.(I)da: since w(0) = 0.

0

Using the Cauchy-Schwarz inequality we get

x ; 9 L 9
2 dw) g, 0w
(11) w (a:)S:r‘/(81> dx§/<6x> dz.
¢

o]

Integrating (11) from 0 to L we obtain

L L2 L 5 9

v 2, o L7 ow

(12) /w dr < 5 ((%) dz.
0 0

Since the continuously differentiable functions are dense in V, therefore
(12) is true for arbitrary w € V and the embedding constant is L%)2.

Inserting (12) into (10) (w = ci(z,t) for fixed t € (0,7)) and using the
e-inequality we get

L
DT] 661 2 2DT1L2 2 2 2
a(c,¢) > / (m <E_) t et ) |de2 Asllelly <
0

with the norm (9), and with

DT1

g = —
BT I¥ L2+ Dny

Hence a is a strongly positive functional.
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Theorem 1. If the boundary conditions are homogeneous, the weak
solution (§), (6) satisfies the inequality

t
Nle@llaxa < e |e(0)lmxm + /e_k('"f)llf(f)llﬂxﬂdﬂ
)

that is the solution is stable with respect to initial values and the right hand
side.

Proof. For fixed t € (0,7 let u := (c((t),c2(t)) € V x H. Then from (5)
we get

(13) (' (@), c®)mxa +alc(t),c(t))y = ([, e(t)uxH,

we use that

1d
('), c(t))uxu = igaH‘UHf}){xH

and (with the notation ¢ := ¢(t))
(14)
Oc

L 2
a(e,¢) > / (DT1 (-{#) + (e —c2)’ 4+ k(e + TQC§)> dz > kllel/3xn-
0

Using the Cauchy-Schwarz inequality, fror (13) we get

ld

(15) gallcnquy + kflellirnm < Ifllaxallellmaxe.
Since L4 i
§d—tHCH§;xH = ||C||HxHal|CI|HxH,

from (15) we obtain

d
(16) g{”clleH + kllcllaxn < ||fllaxH-
Multiplying (16) with e*!, we get

d
(e lellmzs) < eIl xae

and after integration we obtain the stability estimate of the theorem.
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Remark 1. If £ > 0 and the right-hand side is homogeneous, then the
stability estimate shows

lle@®)|| = 0 like to e™*' if ¢ — oo.

Remark 2. We have considered only homogeneous boundary conditions.
If the boundary conditions are

c1(0,t) = ¢{(t) € C(0,T) arbitrary,
(901

the boundary value problem can be transformed into a system with homoge-
neous boundary conditions replacing ¢;(.,t) by

&0 =ca(,t) = cf(t).

3. Approximation of the system of differential equations

We introduce the following noations (see also [3], [4]).

Q:={0<z< L, 0<t<T}, T>0
L __T,
N T M
NMEN; ¢;=ih; t; =7-j;i=0,...,N; j:O,...‘M}.

Wht = { ($1,t]) (= Q I h =

In what follows let the functions y,z be defined on the grid wp; used to
approximate ¢ (z,t) € C31(Q). c2(z,t) € C11(Q) and let

yi = y'Z =y, b)), 2= zf = z(zi,t5)
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(j is arbitrary fixed, (zi,t;) € war);

g =yt =y tioa); &=t = (e tio);

¥ =08 + (1 - 0)yi; zl =0+ (1 - 0)z;
Ui — ¥ 2 — 2

Ye,i = : - l, 2t,i = —l?_l,

Yo = ayrio1+ (1= @)y i,
Yi-1 —¥i-1 .

Yz,i ‘= T — (central difference),

’ 2h
Yz,i = _3{1“}& (backward difference),
1
Yz,i = y-z:lh;yz (forward difference),

Ay =Yzz,i = Yi-1 7 thz' t Yo (second order divided difference).

In [5] we investigated some difference schemes approximating (1), (2),
(3), their truncation error, monotonicily conditions and accuracy based on
numerical experiments. Now we investigate the stability of these schemes.

Two types of the difference schemes were mentioned in the cited paper.
The first was a scheme of classical 6-point type.

One such scheme is the following

1 oy g
(17) Yii +vyi; — DAy] = ::(Zi -y )= kyi,

1.
(18) 2= — (v — 7)) — ky,
T2

where o is a weighting factor, 0 < o < 1.

Further this scheme will be mentioned as ”weighted” difference scheme.
(This approximation leads to a system of linear algebraic equations with a
block-tridiagonal coefficient matrix to determine the solution at the j-th time
step.)

The difference schemes of the second type were the modified box schemes.
Instead of (1), we then approximate the equation

601 361 _ 1 .
W +v—£ = T—l(Cg - C]) - kcl,
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and choosing the weighting factors of the schemes appropriately we get a
numerical diffusion equal to the real physical one. We can then express the
solution at the j-th step explicitly solving a 2 x 2 system of linear algebraic
equations with a constant coefficient matrix. Therefore we get a method which
is not only faster but also more accurate for practically used steplengths than
the classical schemes.

In [5] two such schemes werc analysed. The first scheme is

oy AT = T () 40 (40 7))

~k (vyfI/Q) +(1- 7)y§1_/12)) )

1
(20) 2 = —(y] = 2]) — k2,
T2
where . " . . .
== p——1; =-(1+-=]; ==,
a+ fp 2(1+p q/), Y 2<+q) =3

q:= -;—g (discrete Reynolds-number), p := %} (Courant-number).
This scheme will be named ”straight” box scheme.

The second scheme is
(21)
_ 1 (1 . . 2 1/2
y +oyy =— [—7(z,-_1 + - yie1 —G) + (1=7) (z,(l/ T ))] -
! ! T1 2

1 .
—k [57(3”’"—1 +gi)+ (1~ 7)%(1/2)] ;

1
(22) i = — () —2) — k],

where

1 1 1 1
a+ﬁp::—2—<l+p——>; yi=1-- 0=3
q

This scheme will be mentioned as ”skew” box scheme.
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4. Mean square stability of the difference schemes

For arbitrary functions u,v defined on the grid ws, we use the following
scalar products and norms

N-1
(u,v) := Z uivih; ||yl := v/(u, u);
;
(23) [u, v] ::Zuivih; [u]l = V]u, ul;

N-1
[u,v) = Z wivih;  |[u]] = [y, u).
i=0

Theorem 2. If yo = o = Yz, = 0 and ¢ > 1/2 then the solutions y, z
of the "weighted” difference scheme ((17),(18)) satisfy the inequality

rllgll® + (2l < mllyll® + m2lel® ¥ >0,

that is the solution of (17), (18) is unconditionally stable with respect to the
initial values.
To prove the theorem, we need the following two lemmas.

Lemma 1. Ifup = uz ny = 0 then

1.
(U, Uf) = §U?\; Z 0.

Proof.
N-1

U; — U;_
(u’ui): Zul_+12h lh=

i=1

N-1 N-1 .
1 X 1,
=3 Z UiUi 41 — E UiU;—1 | = ;’(UI\-’UN—I - UIUO) = Zupn,
2 i=1 i=1 2 2

—un_
h
Lemma 2. Let o € Rt be arbitrarily chosen. Then

a+f
27

. Y 1
since ug = 0 and =0 = uy =un_1.

(att + fu, ue) = 5= (lall” = [full®) + (@ = B)llud®
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Proof.
h N-1
(u,ut) = _‘/: Z ui(ﬂi — u,-) =
i=1
N-1 N-1
24 hil
(24) =;[— (Zu +Z Z(ﬂi-ui)2> --Zu?] =
i=1
= =l = ul®) =
r | 1 s 2 t )
N-1
(&, us) = g (i — ) =
i=1
N-1 N-1 N-1 N-1
25 h N 1 . .
(25) =7 Euf—z)'(zu?*-zu?— (Uz—ut)z)]=
i=1 1=1 i=1 i=1
1 2 2
= o= (1l ~ 1) + Tl

Using (24) and (25) we get

(ot + fu,wy) = (@, u) + By, ue) = (IIUII2 —llull®) + (a-ﬂ)llu:||2

Proof of Theorem 2. The proof is similar to the continuous case, see
Theorem 1.

Multiplying (17) by m1y? in the scalar product (.,.) taking into account
the Lemmas above and using the Green-formula, for § > % we obtain
(26)
0=71(y,9°) + mv(vZ,37) — Dri(Ay,y7) + muklly” |1 + ly°]1* = (27, 9°) =

T, ) TT . 1
= o (181 = ilwll®) + =720 = Dllwell® + mvg (v)d + Drallys] P+
+nklly’l® + vl = (27, 07) 2 —(Ilyll2 = lll*) + lly”il* = (7, 97).
Multiplying (18) by 75z in the scalar product [.,.) for 8 > } we get

(27) .
0 = mofze, %) +mak|[27|P+|[27]] = [c", ) 2 5% (Il = 1=+l 12 = (27, 7).
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Summing (26) and (27) and using
7117 = 2(y7 . 2%) + 1271 = Iy = 2°||* 2 0

the theorem follows.

Consider the following classical 6-point difference scheme, which differs
from the ”weighted” scheme (17), (18) only in the approximation of the
advection term by a backward difference, that is

1 o a a
(28) yi +vy; — DAY’ = T—l(z —-y7) —ky’,
1 g o ag
(29) zp = —(y? —29) — k2°.
T2

Theorem 3. For the scheme (28), (29) the same inequality holds like 1n
Theorem 2 for the "weighted” scheme (17), (18).

Proof. The proof is similar to the proof of Theorem 2, only the following
Lemma has to be used.

Lemma 3. Ifug =0 then

1
(uuz) = 5(up_y + hlfuz]|*) > 0.

Remark. If at the end of the river reach the boundary condition is a
homogeneous Dirichlet condition, the following assertion can be proved: if
Yo=% =ynvn =4yv =0and ¢ > -;- then the solutions of the system (17), (18)
as well as those of the system (28), (29) satisfy the inequality

gl + 2|(2]1* < mullyll® + ml[]]* YT > 0.

Consider now the following scheme in which the advection term is approx-
imated by a forward difference

1
(30) Yt + vyl — DAyo = T—(z” —y%) = ky°,
1

(31) 7 = l(y" - 2%) = k2°.
T2
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Theorem 4. Ifyo =90 =y: N =9z,n =0, 0 > 1/2 and 2 <h< gl—),
v v
then the scheme (30), (31) is stable with respect to initial values for every

> 0.
Proof. Using the identities

yr =2yz —yz and Ay = Y=~ 9z _ 2(h

3 h T _yf))

the equation (30) can be written in the form
2D 2D 1
we (2= B)u s (F-v)ur = 6= -

D 2D
If we assume that 2v — L2 > 0 and 5 v > 0, the proof given for Theorem
2 and Theorem 3 can be used for this case, too.
Remark. If the boundary conditions are yo = §o = yy = g~ = 0 and

, 2D C
o > 1, then the scheme (30), (31) is stable for A < —. Namely in this case
v

¢

(y2,y°) = 0, therefore only the condition - v > 0 is required.

We give now mean square stability estimations in the case of modified box
schemes.

Theorem 5. Ifyo = Jo = 0 then the solutions of the ”straight” boz
scheme ((19), (20)) satisfy the foliowing stability estimation

(32) (1= Al +272(1-7A)I[)1” < m(1+ Ay’ +2m2(1+7Ad)| (2%,

where

A1:=2(1-v)(%+k> +2Th—vv (%T;f’—)mu—s-y));

1

Remark. From (32) we get

rllgll? + 2n2[01* < (1 + A llyll + 2720(=0?) < €A (nllyll® + 27l (211®),
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» li
if r < li where A’ := max{A;, A2}, A” := max{A3, A4} and A = ———f +j:, ;

that is the ”straight” box scheme is stable with respect to initial values for
bounded Courant numbers and 7 sufficiently small.

Proof. Only the decisive steps of the proof will be shown.
: h, . . .
Since yy,i-1 = Y1,i— ;(y,—,,i —Ys i), the first cquation of the scheme (equation

(19)) can be written as

(33) Yii + vyg’i :T_ll [7 (Zl(l/Z) _ y‘(1/2) + (1 ( (1/2) (1/2)>]
—k (- P) = 5,

where
p=1=p-

B3R
[l
—
|
4
TN
+
<=
|
| —
N——

We multiply (33) by

i + ui I
D= BEE oy <§ _p> v

in the scalar product (.,.). Using the Lemma 2 we get

2 _ 2 o ,
o WPy ) vor (-0 080 = (7 252)).
’ /

Taking into account that
h 1 . h 1,
(¥&,v°) = §l|y§“2 + §(yﬁ;_1)2 = §v—§||f —wll*+ §(y}'§,_1)2 and
1 1
(w8, v) = (o) = =l

(34) can be rewritten as
ol = l? 1 1
W w5047 (5= 0) G =r (5 = ) el =

= (f, y(lm) :
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Wy (2 ()Y + S =
@) =g+ (204 (e (3-5) ).

Since
h 1 D h 1 h
%"(5‘ )—7220 and ;‘T(a" )=;7

from equation (35)

that is

all® = llyll® (2 P
(36) =y S (AP )

For the right hand side of equation (36) we can get an upper estimation if we
apply the e-inequality and the Cauchy-Schwarz inequality several times.

Multiplying the second equation of the scheme (equation (20)) by 272(2; +
z;) and the inequality obtained from equation (36) by 27 and adding them we
get the asserted estimation.

Remark. In the case of the "skew” box scheme (21), (22) an assertion
similar to that of Theorem 3 can be proved with the following constants

61-7)  h4-7)

A=
1 TV T
h v
Ay = ——;
TV T

As:=2(1 5 1ok 42k Lk G-t =)
3:=201-7{ Py N+ )

1- h
A== by
T2 TV T2

Observe that here the stability condition is weaker than in the case of the
”straight” box scheme.
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5. Summary

In this paper we have proved stability of the system (1), (2), (3) with
respect to the initial values and right-hand sides. The existence and unici ty
of the weak solution also have been shown.

Several difference schemes were analyzed with respect to mean square
stability. The classical 6-point schemes have been found to be stable without
any condition on 7, but a condition had to be formulated on the weighting
parameter and - for one of the schemes - a condition on A.

The box schemes were shown to be stable in mean square sense for 7 small
enough and for bounded Courant numbers.
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