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THE COEFFICIENTS OF DIFFERENTIATED
EXPANSIONS OF DOUBLE AND TRIPLE
ULTRASPHERICAL POLYNOMIALS

E.H. Doha (Giza, Egypt)

Abstract. The tensor product of orthogonal ultraspherical (Gegenbauer)
polynomials is used to approximate a function of more than one variable.
Formulae expressing the coefficients of differentiated expansions of double
and triple ultraspherical polynomials in terms of the coefficients of the
original expansion are stated and proved. The special cases of double and
triple Chebyshev polynomials are also considered. An application of how to
use double ultraspherical polynomials for solving Poisson’s equation inside
a square subject to nonhomogeneous mixed boundary conditions is also
noted.

1. Introduction

Spectral and pseudospectral methods have superior approximation proper-
ties if they are compared with other methods of discretization. It can be shown
that if the eigenfunctions of a sigular Sturm-Liouville problem are used as basis
functions, then the rate of decay of the expansion coefficients is determined by
the smoothness of the function being expanded and not by any special boundary
conditions satisfied by the function. Gottlieb and Orszag [5] have shown that
if the functions of interest are infinitely differentiable, then the n-th coefficient
an decreases faster than any finite power of 1/n.

For the spectral method and its variants - the Galerkin and tau methods
- explicit expressions for the expansion coefficients of the derivatives in terms
of the original expansion coefficients of the solution are required.

A formula expressing the Chebyshev coefficients of the general order
derivative of an infinitely differentiable function in terms of its Chebyshev
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coeficients is given by Karageorghis [6], and a corresponding formula for the
Legendre coefficients is obtained by Phillips [7]. A more general formula - with
its special cases - for ultraspherical coefficients is given in Doha [2].

Formulae expressing the coefficients of expansions of double and triple
Chebyshev and Legendre polynomials in terms of the coefficients of the original
expansions are given in Doha [3,4].

In the present paper we state and prove the corresponding formulae
expressing the coefficients of expansions of double and triple ultraspherical
polynomials which have been partially differentiated any number of times with
respect to their variables in terms of the coefficients of the original expansions.

In Section 2 we give some properties of double ultraspherical polynomials
and in Section 3 we describe how they are used to solve Poisson’s equation
in two variables inside a square subject to nonhomogeneous mixed boundary
conditions with the tau method as a model problem. In Section 4 we state
and prove the main results of the paper which are three expressions for
the coefficients of general order partial derivatives of expansion in double
ultraspherical polynomials in terms of the coefficients of original expansion,
results for the Chebyshev polynomials of first and second kinds and for the
Legendre polynomials are obtained as special cases. Extension to expansion in
triple ultraspherical polynomials is also given in Section 5.

2. Some properties of double ultraspherical polynomials

The one-variable ultraspherical (Gegenbauer) polynomials associated with
the real parameter @ > —1/2 (see [1]) are a sequence of polynomials C’,(la)(:c)
(n=0,1,2,...), each respectively of degree n.

For our present purposes it is convenient to standardize the ultraspherical
polynomials so that C,(,a)(l) =1(n = 0,1,2,...). This is not the usual
standartization, but it has the desirable properties that C,(,o)(z:) is identical
with Chebyshev polynomials of first kind T,,(z), C,(lllz)(:c) 1s the Legendre poly-
nomial P,(z), and C,(,l)(:c) is equal to —L-U,(z), where U,(z) the Chebyshev

n+1
polynomial of second kind. In this form the polynomials may be generated by

using Rodrigue’s formula

W 00 =(-3) et~ =R -
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and are satisfying the orthogonality relation

0 m#n, a#0;

1 S
/(1 - £2)*" 1200 ()C(z)dz = { T, m=n=0 a=0:
4 /2, m=n40, a=0,

0, m#mn, a=0.

The ultraspherical polynomials are eigenfunctions of the following singular
Sturm-Liouville problem

(1-2z2)d"(z) — (2o + 1)zd'(z) + n(n + 2a)®(z) = 0.

A consequence of this is that spectral accuracy can be achieved for expansions
in ultraspherical polynomials.

Suppose we are given a function u(z) which is infinitely differentiable in
the closed interval [—1,1]. Then we can write

u(z) = i 0. C{(z)
n=0

and for the ¢g-th derivative of u{z)

oo

ul(r) = Z al e (z).

n=0

Doha [2] proved that

20 = 29(n+ a)l'(n + 2a) y

n (¢ —n!

><f:(j+q—2)!F(n+J+q+a—1)(n+2+q—2)!

G-DIT(n+j+a)l(n+2j +q+2a—2) "Hite?

j=1

Now we define the double ultraspherical polynomials as

(2) Cil(z,y) = C(2)CE (),
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i.e. a product two one-variable ultraspherical polynomials, where C,(,?)(:c),

C,(,a)(y) are ultraspherical polynomials of degrees m and n in the variables
z and y, respectively. These polynomials are satisfying the biorthogonality
relation

1 1
/ / [(1 - 22)(1 - y?)]*~Y2C (2, )CL (2, y)dady =
-1-1

2
wil! C(2a)(a+1/2) . . .
(i+a)(j+a)1"(i{l-20)l"(j+2a) [ T(a) , 1=k, J= [, a #: 0;
72, i=j=k=1=0, a=0;
= T/4, i=k#0,j=1#0, a=0;
7?2 /2, i=k#0,j=0l=0o0r
i=k=0,5=1#0, a =0;
0, for all other values of 7, 3, k, [.

It is worthy to note here that typical orthogonal polynomials - the double
Chebyshev polynomials of first kind Tpnn(z.y) and of second kind Upmn(z,y)
and the double Legendre polynomials Pp,(z,y) - are particular forms of the
double ultraspherical polynomials. Namely, we have

Tn(z,y) = Cr(v?gz(zay) = Tm(z)Tn(y),

Unn(z,y) = ChA(z,y) = (m+ T)I(T-i-—l‘)

Pmn(m>y) = Cr(r}r/12)(x y) (T)I ﬂ(y

Um(2)Un(y),

Let u(z,y) be a continuous function defined on the square S(-1 < z,y < 1),
and let it have continuous and bounded partial derivatives of any order with
respect to its variables z and y. Then 1t is possible to express

(3) u(z,y) = L Z Amn CE(2)C) (y),

n=0m=0

(4) u®9(z,y) = DEDJu(z,y) = Y a&DC(z)CM(y),

n=0m=0
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where a&;® denote the ultraspherical expansion coefficients of u(®%)(z,y) and

0,0
asnn)za n-

Using the expressions (see Doha [2])

m+ 2a m o
(5)  2(m+a)C{(z) = ey 1 Ds C) () - -m—+7a—D 2O, (2),
@)y — P20 5 (a) n ()
(6) 2(" + O)Cn (y) n + 1 D Cn+1 n+ 200 — (v l(y)

with the assumptions that

[e ] o0 [e o] (o o]
Z Z (p=1.9) (@) (£)Cl@)(y Z Z a0 (2)CL) (),
n=0m=0 n=0m=0
o0 o0 (e} 00
D33 a ICE@IC(W) = 3 Y aI e @) )
n=0m=0 n=0m=0
it is not difficult to derive the expressions
(7() ) ' )
m+2—1) (g (m+1 (p,9) (P-1,9)
[0 SR —— A —_ - ’ = ! >1
2m(m + a - 1) m-1,n 2(m+ o+ 1)(m+2a)a’"+1'" @mn Pt
(8)
(n+2a—1) PO (n+1) PO )R- aEﬁ;{’"l) n,q>1.

n{in+a—1) ™1 2n+a+1)(n+2a) mintl =

For computing purposes the equations (7) and (8) are not easy to use, since the
coeeficients on the left hand sides are functions of m and n, respectively. To

simplify the computing we define a related set of coefficients &9 by writing

(m+ a)(n+ a)l(m+ 2a)I'(n + 2a)

(p.9) — (p.9)
(9) amn m‘,n[ bmn
m,n > 0, p,g=0,1,2,...
The equations (7) and (8) take the simpler forms
(10) b = b8 = 2Am 4 B0 mp2 1,
(1) by = BT = 2+ apfID mg 21
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The repeated application of (10) keeping n and ¢ fixed (see [8]) yields
(o o]

(12) D =23 (m+2i+a—100 . p>1,
i=1

and the same with (11) keeping m and p fixed yields

[e o]
(13) b&D =23 (n~2ja - 1)TAT) g>1.
j=1

3. The tau method for Poisson’s equation in two variables

Consider Poisson’s equation in the square S(—1 < z,y < 1)
(14) Diu(z,y) + D2u(z,y) = f(z,y) ~1<z,y<]l,

subject to the nonhomogeneous mixed boundary conditions

(15\ u+alDIu:71(y) T = —1: —1§ysl)
) u+ asDzu = 72(y) z= 1, -1<y<1,
(16) u+ fiDyu=6(z) y=-1 -1<z<l],

u+ P Dyu = b3(z) y=1, -1<z<1

and assume that both u(z, y) and f(z, y) are approximated by truncated double
ultraspherical series

N M

(17) wz,9) =3 D amaC(2)CL(y),
n=0m=0
N M

(18) f@,9) =Y D fanC()CE(y).

n=0m=0
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Assume also that the functions v1(y), v2(y), 61(z) and 82(z) have the following
truncated ultraspherical expansions

N

(19) 7i(y) = Y WIC(y),
n=0
]\f

(20) 12(y) = Y #PC(),
n=0

M

(21) bi(z) =Y 6LCE(=),
m];O

(22) =Y 6ck (),
m=0

then the ultraspherical tau equations for Poisson’s equation (14) are given by
(23) a0 +alP = fn, 0<mM<M-2 0<n<N-2,

while the boundary conditions (15) and (16) with (19)-(22) yield

M
Y (=17 [am" + ala‘ri;f"} =y

(24) "L=0 M n= 071’2)' "/‘N)
> [amn + azai,i;,""')] =7
m=0

N
S (1" [amn + Bra)] = 6
(25) n=0 m=012... M

N
> [amn + ﬂzaﬁﬁ;f)] =60
n=0

The 2M + 2N + 4 boundary conditions, given by (24) and (25), are not all
linearly independent, there exist four linear relations among them. Thus, equa-
tions (23), (24) and (25) give (M + 1)(N + 1) equations for the (M + 1)(N +1)
unknowns am, (0 <m <M, 0<n<N).

The coefficients as,lmo), aS,?n” aﬁfno) and a(o") of the first and second partial

derivatives of the approximation u{z,y) are related to the coefficients ap,, of
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u(z, y) by invoking (12) with p =1 and p = 2, and (13) with ¢ = 1 and ¢ = 2,
respectively. In the next section we show how the coefficients of arbitrary
derivatives may be expressed in terms of the original expansion coefficients.
This allows us to replace ao)) a0 and o3 in (24), (25) and (23)
by explicit expressions in terms of the a,,,. In this way we can set up a linear
system for am, (0 <m < M, 0 <n < N) which may be solved using standard

techniques.

4. Relations between the coefficients

The main result of this section is to prove the following

Theorem 1. The coefficients b2 ure related to the coefficients b0

bS,’,’;?) and the original coefficients bpy, by

9p
) = 2
(20 LRI
(i+p=2)T(m+it+p+ta—1) . 0
Z (z-1) F(m+i+a) (Tn+2z+p+a—2)b£nf%1+p 2,n p21
ap
27 b(P.) =
27 G-
= J+q—2)‘I‘(n+J+q+a—l) .. (,0)
* (G- 1) F(n+j+a) (n+2j+a+a=brnlojipg 421,
j=1
9p+yg
28 bR = S
9 (p—-Di(g-1)!

xii itp=2(+q-2)'T(m+itpta-Dl(ntj+g+a—1)
oo E=DG- Tim+i+a)l(n+j+a)
x(m+2i+p+a—2)(n+2j+ ¢+ 0= Dbmiitp—2,nt2i4g-2 pg>1
for all m,n > 0.

In order to prove the theorem the following two lemmas are required.
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Lemma 1.

§3m+%+a_lﬁM—i+p—MHm+i+M+p+a—D_
(M =)' T(m+i+ M+ a) -

i=1

_1M+p-1T(m+M+p+a)
Tp (M-1)! T(m4+M+a)

(29) m,p > 1.

Lemma 2.

- (N=j+g=DT(n+j+N+q+a—1) _

2 +a—1
;("+J+a ) (N=)HT(n+j+N +a)

Y
(N+¢-DT(n+ N +gq+a) —

1
(30) “7 (N-DT(n+N+a) =

The interested reader is referred to Doha [2] for the proof of lemmas (29) and
(30).

Proof of Theorem 1. Firstly we prove formula (26). For p = 1
application of (12) with p = 1 yields the required formula. Proceeding by
induction, assuming that the relation is valid for p (keeping n and ¢ fixed) we
want to show that
(31)
fpri = 2SN (4R DINn 4 it pt o)

mn p! (i —1)! I(m+i+a)

(m+2i+p+a-— l)bf-r?::%i-i-p- 1n*
1=1

From (12), replacing p by p + 1 and assuming the validity of (26) for p,

. = (k+p—2)!
(32) bie 'q)ﬂ(p—l)fz (m+2ita- 1){2%—?—1—)'—)x

k=1

T(m+2i+k+p+a—2)
'm+2i+k+a-1)

Let i+ k —1= M, then (32) takes the form

(m+2i+2k+p+a- 3)b£r?f%i+2k+p-3,n} :

2P+1

) M
. k - 2)!
bs,’;:l’@‘ Z Z (m+22+a—1)(—(:—flT)x
M k=1 :

itk=M41



66 E.H. Doha

I'm+2i+k+p+a-2)
(m+2i+k+a-1)

(m+2M +p+a-— 1)b§fjf§M+p_1,n] ,

which may also be written as

e o]

gt =

{Zm+2i+a—1)wx

(P—I)M M —)!

I'm+M+i+p+a-
'm+M+i+a)

1
Jm+2M +p+a- 1)} b My 1.

Application of lemma (29) to the second series yields equation (31) and the
proof of formula (26) is complete.

It can be also shown that formula (27) is true by following the same
procedure with (13), keeping m and p fixed. Formula (28) is obtained
immediately by substituting (26) into (27) or (27) into (26). This completes
the proof of Theorem 1.

Now the substitution of (26), (27) and (28) into (9) gives the relations

between the coefficients agﬁ,f)] aS,?,.“ as,’:no) and a,,, as

2°(m + a)I'(m + 2a)

33 (p.9) —
. dmn (p—1)im!
Z(z+p )T(m+itpra—1)(m+2i+p—2)! 00 > 1
(i-DIT(m+ita)l(m+2i+pt2a—2)  mite-zn  P=5
q 2
(34) a0 = 2 (n+a)l' (n+2a)x
(g— D'n!
XZ(J“— 2f(n+jt+g-a-1)(n+2/+9-2)! (o >1
= G-DT(+j+a)l(n+2j+9+2 -2) Unntzjtg-2 121
(35) a?0) =

_ 2719 (m + a)(n + a)L(m + 2a)T(n + 2a) i i i+ p DG+q-2) N

(p—=D!g - 1)!m!n! e (i =17 - 1)!

Fm+i+p+a-1)I(n+j+g+a—-1)(m+2i+p—2)(n+2j+q-2)!
I(m+i+a)l(n+j+a)l(m+2i+p+2a—2)[(n+2j+ g+ 2a—2)
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XAmy2itp—2,n+2j+q—2 pg>1l

In particular, the special cases for the ”bivariate” Chebyshev polynomials of the
first and second kinds may be obtained directly by taking a = 0, 1 respectively,
and for the ”bivariate” Legendre polynomials by taking o« = 1/2. These are
given as corollaries to the previous theorem.

Corollary 1. If

(36) u(z,y) = Z Z, armn T (2) T (),

n=0 m=0

[e 5] ”
(37) uPO(z,y) = Y b Tn(2)Tu(y),

n==0 m=0
then the coefficients a(p 9 are related to as,?,f), as,’ino) and apy, by

9p

38 ai,’l’n‘” =
(38) -1

}:(H-p ) (m+i+p—2)

. 0,
G- (m+i-1) (m+2i+p=-Dafiyy 00 P21,

29
(p.a) — ,
(39) afd) = TE
G+g-2)!(n+j+q¢-2) (.0)
szx G- (n4j-1) (n+2+a-2annioihq-2 121,
9p+g
(40) 057}:13) =

CEDICEDN

(e o] o0 . _ VW _ 1 . _ | . 3 \
XZZ(Z-HD ?).(J+q 2).(m+z.+p' 2),(,?_*_]_:,(1 2)'><
j=1i=1 ("‘1)!(J —-1)!(m+z— 1).(n+] - 1).

X(Mm+2i4+p—2)(n+2j+ ¢ — 2amizitp-2.n+2i+9-2 P g > 1
for allm,n > 0.

Note that the double primes in (36) and (37) indicate that the first term
is 1/4ao0, amo and ap, are to be taken as 1/2amo and 1/2ap, for m,n > 0,
respectively.
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Proof. Formulae (38), (39) and (40) are obtained directly by simply
setting « = 0 in (33), (34) and (35) respectively, noting that al'(2a) =
= 1/2I'(2a + 1) which equals 1/2 as o tends to zero.

It is worthy to note that formulae (38), (39) and (40) are in agreement
with those obtained by Doha [3].

Corollary 2. If

u(a:,y) = Z E Aanm(I)Un(y)y

n=0m=0
uP9(z,y) = ZZASW Un(y),
n=0m=0
then the coefficients Amyn’ are related to the coefficients Amn’, Amn’ and Ampn
hen the coefficients A%y lated 1o the coefficients Any’, A%y and A
by
(41)
2°(m +1) (z+p 2)'m+2+P D! .9
AR = (p—1) Z (i — 1)!(m+1)! Antaeep-zn P21
(42)
2n+ 1)~ G+g-D'(n+ji+q-1" 0
AR =G & Gy e 1210
AP0) — 22t (m+ 1)(n+ 1) {ii i+p—DG+qg-2)(m+i+p-—1)!
mr (p-DNe-1)! HFH (= DI(F = D!(m +9)!
n+j+q-—1)
(43) xg—_]—q'——l'Am+2i+p-2,n+2j+q—2 p,g2>1

(n+j)!

for all m,n > 0.
Proof. Simply set o =1 in (33), (34) and (35), noting that

a . P9
App = —— 280 Al = Tmn
(m+1)(n+1) (m+1)(n+1)

Corollary 3. If

u(z,y) = ZZamnm ) Pa(y),

n=0m=0
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uP (g, y) = Z E a2 P (z) Pa(y ),

n=0m=0

then the coefficients o) are related to the coefficients a9 and a,

by
(44) a,(_,"’;,") =
QP 12m+1)z +p 2)'I‘m+z+p—1/2)a(0q) -
- 1) (i—- DT (m+i+1/2) m+2itp-2n
_ (2m+1) Z(z+p—2 (2m+2i+2p - 3)(m +1)! (0,9)
PIp-1) & ((—1)I2m+20)(m+itp-2) -
p21,
(45) afd) =
20-1(2n + 1) 3 (G+q-2) 'P(n+1+q—1/2)a(p0)
(-DI = G-DT(r+j+1/2) et 2=
(2n+1) (G+g-2 (zn+21+i’q—3)'(n+1)'ap0) _
2°2g -l G -DRn+2)(n+j+g-2) e
g1,
p+yq—2
(40 g = L EmE DO+ 1)

(r- D¢ -1

2 G+p—-2)(G+qg—-2)T(m+i+p-1/2)[(n+j+q—-1/2)
N> G- DG - DIT(m+i+1/20(n+] +1/2) g

—

=11=

<.

2m+1)(2n+1)
XAt 2itp-2n+2i+9-2 = Qog=a(p — 1)I(q - 1))

= (i + P = 2)!(G + g — 2)!(2m + 2i + 2p — 3)!(2n + 2j + 2¢ — 3)!
2.2 G- DI - DI(2m + 20)1(2n + 2j)! X

=11i=1

<.

m+1)!(n+ j)!
T i-{Ep — 2;,211 +].)+ - 2)!am+2j+p—2,n+2j+q—2 pg21
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for allm,n > 0.
Proof. Simply set a = 1/2 in (33), (34) and (35), noting that

F(m+i+p—1/2) 1 (2m+2i+2p—3){(m+1)!
T(m+i+1/2) — 22-3 2m+2)!(m+i+p—2)"

It is worthy to be mentioned here the formulae (44), (45) and (46) are in
agreement with those stated and proved in [4].

5. Extension to triple ultraspherical series expansions

Let u(z,y,z) be a continuous function defined on the cube C(—-1 <
< z,y,z < 1), and let it have continuous and bounded partial derivatives
of any order with respect to its variables @,y and 2. Then it is possible to
express

u(@,y,2) = 3 30 3 aima Ol (@) O (1) CL(2),

n=0m=:0 [=0

wPe)(z,y,2) =
«wo oo oo

= DED{Dju(z,y,z) = Z Z a("p’q'r)CI(a)(:c)Cﬁ,f’)(y)c,(l“)(z).

Imn
n:=0m=0 (=0

Further, let

gpan — (It a)(m+ a)(n+ o)1+ 2e)l(m + 20)T'(n + 20)  (5,,r)
Imn 'min! Imn

(47) I,m,n>0, p,q,r=0,1,2,...,
then it is not difficult to show that

pear)  _plear) 21+ a)b(zl~1.q,r) p>1

I-1,m,n I+1,mn Imn

b(qu»r) — b(prq»r) - 2(m + a)b(prq—lvr) q Z ‘l

Im—-1,n I,m+41,n Imn

b(prQ|T) - bgp:q!r) — 2(n + a)b(qu'r—l) r Z 1

Iimn—1 ymn4l = imn
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which, in turn, yield

(48) brm) =9 Z(l +2i+a—1)bho 0 p> 1,
[ee]

(49) bR =2 (m+2j +a— DA L g2 1,
j=1
(o]

(50) bR =23 (n+ 2k +a— 1P >
k=1

Now we state a theorem which is considered as an extension of Theorem 1 of

Section 4.

Theorem 2. The coefficients bgr’;{g;’r) are related to the coefficients with
superscripts (0,q,7), (p,0,7), (p,4.0), (0,0,7), (0,4,0), (0,0,p) and bimn by

.
(p=1)!

(51) b =

GE+p-2)T(+i+p+a—1) " ©0,r)
Z - +i+a) (I+2i+p+a=Db 201 mn

52 bPAT) =
( ) Imn (q—l)!

(p,0,r)

+g-2)T'(m+j7j+q+a-—1 ; ;
Z(] g—-2)'T(m+j+gq )(m+2]+q+a—2)bz,m+2j+q—l.n

(-DIM(m+J+a)

(Poar) _ 2 )
(53) blmn (7_ _ 1)' X
k+r— QT(n+k+r+a-1) (2,4,0)
Z -DIM(n+k+ ) (n+2k+r+"_2)blﬁnq,n+2k+r-1
k=
(54) pPar) _ 2t

q2>1,

e o] (e o) . .
(z+p—2)'(g+q—2)'F(l+z+p+a-1)F(m+;+q+a—1)

(1= DIG — DT+ i + a)T(m + ] + a)
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x(I+2i+pta—-2)(m+2j+q+a- )6533,53,, Lmt2j+g-1n  Pr921
(par) _ Ll
(55) bimn “1)i(r - 1)!

= (i+p—- 2)'(k+r—2)’F(l+z+p+a—1)F(n+k+r+a—-l)
DY G—DI(k—D)IT(+i+ta)(n+k+a)

x(I+2i+p+a—2)(n+2%k+r+a-2b050 | e BT,
929+

(p.qir) %
(%) i = DG 1)

ek +r =) T(m+jt+gt+a-Dl(n+k+rta—1)
22 G-D'(k-DIT(m+j+a)l(n+k+a)

x(m+2j+q+a—-2)(n+2k+r+a-— 2)()5‘:7&02]“ Lt 2ktr—1 q, 7> 1,

(57) b0 = rre
imn ( 1) (q — 1)!(1 — 1)!

2N o G+p=—2)(G+q—-2)(k+r—2)
LT GGk

i=1j=1k

xl"(l+i+p+a—1)I‘(m+j+q+a—1)F(n+k+r+a—l)x
Fl+i+a)l(m+j4+a)l(n+k+a)

xX(I+2i+p+a—-2)(m+2j+g+a—-2)(n+2k+r+a—2)x
XO142i4p—1,m+2j+q—1n+2k+r-1 p,g,r2>1

Outlines of the proof. Formulae (51) can be proved by induction on p,
(52) by induction on ¢ and (53) by induction on r, respectively. Substituting
(51) into (52) and (53), and substituting (52) into (53) give formulae (54),
(55) and (56). Formula (57) is obtained by substituting (53) into (54). This
completes the proof.

The explicit formulae relate the coeflicients a; ) with those with su-
perscripts (0,q,7), (p,0,7), (p,¢,0), (0,0,7). (0,q, 0) (p,0,0) and the original
coefficients aimn can be obtained by using formula (47) with the formulae (51)-
(57).

(pygsr
mn
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The formulae corresponding to expansions in triple Chebyshev polynomials
of the first and second kinds and triple Legendre polynomials may be obtained
- as special cases - by taking « = 0,1 and 1/2 respectively in formulae (47)
with (51)-(57).
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