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A CONNECTION BETWEEN A CLASS OF
ITERATIVE RECURRENCE RELATIONS
AND SOME WORD SEQUENCES

B. Zay (Eger, Hungary)
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Abstract. Let k > 2 fixed integer and define a sequence G by Gx(0) =
= 0 and Gg(n) = n — Gg (Gk(...(n—=1))...), n > 1 with k iterations
of Gk on the right-hand side. In this paper we show connections between
properties of this sequence and generalized Zeckendorf representation of
natural integers.

Let k > 2 be integer. Define the sequences Gi(n) by Gi(0) = 0 and
(1) Gr(n) =n— G (Gik(...(Gk(n=1))..)), n>1,

with k iterations of G on the right-hand side. This class of iterativ recurrence
relations was investigated by various authors, see for instance in [1], [7], [8] and
(9]

In particular, it was independently shown in [2] and [3] that G2(n) can be
given expicitly as

(2) Ga(n) = [(n + 1)a]

where « is the unique positive root of the equation z2+z ~1 =0, i.e. a =
= (v/5 —1)/2 and [z] denotes the greatest integer less than or equal to z.
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D. S. Meek and G. H. J. Van Rees [9] gave a solution of (1) in terms of
generalized Fibonacci base reprezentations of n. For a fixed integer k > 2 they

defined the sequence Fl(k), Fz(k), ... by

(3) F® =n for n=1,2.. .k
and
(4) FO=F® +F*  for n>k+1.

This sequence can be used to represent uniquely any positiv integer n as
follows.

Find the largest Fj(lk) that is less than or equal to n. Then find the largest

F]-(:) less than or equal to n — Fj(lk), and continue this way.

So n can be written as

Jt
(5) n =Za,-Fi(k)
i=1

or shorter

(6) n =a;,aj,_1...a201,

where a;, = aj, = ... = a;, = 1 and the other a;’s equal zeros. We shall call
n = aj, ...a; the Zeckendorf reprezentation of n in a “generalized Fibonacci

base”. It is clear from this definition that
) Jiv1—Ji>k forall 1<i<i+1<t,

i.e. in (6) between two “1”s are at least k — 1 “0”s. The “truncation” T} of
a representation is defined in [9] as follows. Let n be represented as in (5) (or

(6))-
Then

Jt
(8) Te(n) = a;F*) = aj, 105,y ...

i=2
D.S. Meek and G.H.J. Van Rees [9] proved the following result:
9) Gr(n) =Te(n—-1)+1

for n > 1, where Tx(0) = 0.
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Define Di(n) by
(10) Di(n) = Ge(n +1) — Gi(n), n=0,1,....
From (9) we see, that we can write
(11) Di(n) =Tx(n) —Tk(n—1), n=1,2,....

[t is easy to prove [see 10] that Di(n) = 0 or 1 for any non-negative integer n
and k£ > 2.

Let D() denote the infinite string
(12) D™ = Dy(0)Di(1). ..,

whose n — 1-th element is D(n). Using the digits “0“ and “1” we can form
words even word sequences by “juxtaposing digits”.

Let C(© be an infinite string defined by

(13) c® =0 c¥=1,
(14) c®=c® c® = n>2
and

(15) c® =P o,

where the operation of the right hand sides of (14) and (15) is the concatenation
of words.

It is well known (see [12]), that
(16) D2 = @
and the word sequence defined by (13) and (14) has been studied extensively
(e.g. in [10], [11], [5] and [4]).

In this paper we extend the above result like (16) for arbitrary k£ > 2.

If n is a positive integer, then we denote the Zeckendorf representation of
n in the basis F¥) (defined in (3) and (4)) by
) n = AE:; .. Ag‘kz = EAS:ZF‘,()C),

s=1

and
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(18) AR =0

if s > r or n = 0. Comparing (5) to (17) we can note that r = j; and Ag ) = q,
for1<s<r.

We show a connection between Di(n) (defined by (10)) and Asﬂ
Theorem 1. For all integers k > 2, n > 0 we have

(19) A =1 - Di(n).

Proof. Since G¢(0) = 0, Gk(1l) = Gi(2) = 1 and so Dg(0) = 1, D(1) = 0,
furthermore Ag;; = 0 and A;,; = 1, (19) holds for n = 0 and 1. Assuming that
n > 2 it follows from (11) that (19) is equvivalent to

(20) Te(n) = Te(n-1)=1- A% n>2

nl

If 4;’? =1ie n= A(k) . .A(k)l then n—1= A(k) ‘ Af.k%O and so Ti(n) =
= Aslkl . Aﬁk% = Tx(n — 1), i.e. (20) is satisfied.

If Aﬁfl = 0 then denoting by A the last “1” in AE;"E o (k) p (e g =
= min{s | Aslkz =1,1<s<r}),n= A‘k) . A(qulO .0 (here g <r),and

n—1= ASP Agk;HOlbq_g ...b1, where b; = 1 if and only if ¢ — ¢ is divisible
by k, furthermore if g =r thenn =10...0 and n — 1 = 1bg_5...b;.
In this case

Ti(n) = AR .. AF) 110,02 AF) . AL) 10165 by = Ti(n — 1),

from which we have T(n) — T(n — 1) = 1, which was to be proved.

To formulate our second theorem we have to define some binary word
sequences.

Let s > 1 and k& > 2 be arbitray fixed integers. Let the initial words be
defined by

(21) Q(k) =boby ... Bpw_, forall s<m<s+k-1,

where b, = 1 if and only if F{® <n< F(+1 and b, = 0 (in the other case),
furthermore let

(22) Qﬁ,’i?, = QE:)_lQ(k) forall m>s+k,

m—k,s’

where the operation of the right-hand side is the concatenation of words.
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Theorem 2. If0 < n < F,(nk) and m > s > 1 then the n + 1-th character
of QE:)s is A5,’°2 (defined by (17) and (18)), i.e.

(23) QP = A Al) . .Ag‘(mi)_l L, forall m>s.

Proof. From the definition of Q% and F{* it immediately follows that
ng;)s consist of F¥ characters.

By (17) n = Ag,k,)- . Astk{ is the Zeckendorf representation of n in the basis
&

110 < n < F¥ then 4%) = 0 (by (18)); if F) < n < F%) then
AR = Al = 1,0 F%) < n < F¥),_| then AY) = 0 (using (7) and the

inequality r — s < k). Regarding these facts and (21) we have verified (23) for
all m where s<m<s+k—1.

Suppose that m > s+ k

o®,, = A A®)

m-—1,s F,(:ll—l,s
and
(k) — 4(k) (k)
Qm—k,s = "40,5 - 'AF("’,‘—I,;‘

Then from (22) we obtain

. k k k
(24) Q) = Aff) .. APLB“IJAE,,).,.A(F(M{L L
i FE® <n< F® 4 F® = P then
(25) n=A%) . AY) Al A,
where1_<_s_<_m—k,AE:,)n_1 =1 and AE:B:Oforalli(m—k<i5m—1).

fg=max{i | 1<i<m—1, A" =1, F) <n<FY}, then from
(25) we get
(26) n—F® =A@ AF) =a® AW

n-F® _1’ n—F®) g’

m
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From (25) and (26) we have

(27) Al) = A%

It is clear that Aif(l) =0=A{) (1<s<m=—k), and by (18) and the

m=1,5

definition of ¢

(28) AE{‘Q =0=4W

n-F,(:ll—s

follows for ¢ < s < m — k. Using (27) and (28) we can obtain (23) from (24).
This completes the proof of the theorem.

Now we define the complement of the word sequences given by (21) and

(22). Let —(,:)s =do...d g foralls <m < s+ k-1, where d, = 0
if and only if F,(k) <n< F,(:)l and d, = 1 else. Furthermore let @S:\s =
= _E:)_l‘sam_k’s, for all m > s + k. Denote by —Q-(k) an infinite string whose

n-th character is the n-th character of —Q_(,:,)l,

We can simply formulate our last theorem.

where n < F,(nk).

Theorem 3. For all k > 2 integers
(26) p® =",

where D) denotes an infinite string, too, defined by (12).

Proof. It immediately follows from Theorems 1 and 2.
Finally we note that using (26) and (16) we can obtain the equalities

D@ = ¢ =g®
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