CONSTRUCTION OF NUMBER SYSTEMS IN ALGEBRAIC NUMBER FIELDS

I. Kátai (Budapest/Pécs, Hungary)

To the memory of Imre Környei To the memory of Béla Kovács

1. Let Γ be an algebraic number of degree n, with conjugates $\Gamma^{(1)} = \Gamma$, $\Gamma^{(2)}, \ldots, \Gamma^{(n)}$. Let $\mathcal{I}^{(j)}$ be the set of integers of $Q(\Gamma^{(j)})$, $\mathcal{I} = \mathcal{I}^{(1)}$.

Let $\alpha \in \mathcal{I}$, and \mathcal{F} be a complete residue system $mod \ \alpha$, such that $0 \in \mathcal{F}$.

Definition 1. We say that (\mathcal{F}, α) is a number system (NS) in \mathcal{I} , if each $\beta \in \mathcal{I}$ can be expanded as a finite sum of form

$$(1.1) \beta = e_0 + e_1 \alpha + \ldots + e_k \alpha^k, e_j \in \mathcal{F} (j = 0, \ldots, k).$$

Remark. The uniqueness of the expansion is obvious, since e_0 is determined by $\beta \pmod{\alpha}$, etc.

2. For each $h \in Q(\Gamma)$ let $h^{(j)}$ be its jth conjugate, and for any $I \subseteq Q(\Gamma)$ let $I^{(j)} = \{h^{(j)} \mid h \in I\}$. For an arbitrary $\mathcal F$ complete residue system $mod \ \alpha$ let the mapping $J: I \to \mathcal I$ be defined as follows.

For each $\beta \in \mathcal{I}$ let ϵ_0 be the coefficient (= element of \mathcal{F}) for which α is a divisor of $\beta - e_0$, and let $\beta_1 = \frac{\beta - e_0}{\alpha}$. Then $J(\beta) := \beta_1$.

From now on we shall assume that $|\alpha^{(j)}| > 1$ (j = 1, ..., n). Let

$$K_j = \max_{f^{(j)} \in \mathcal{F}^{(j)}} |f^{(j)}|, \qquad L_j = \frac{K_j}{|\alpha^{(j)}| - 1}.$$

Lemma 1. We have

(i)
$$|J(\gamma)| < |\gamma|$$
 if $|\gamma| > L_1$.

(ii) If
$$|\gamma| \leq L_1$$
, then $|J(\gamma)| \leq L_1$.

Proof. Clear.

We can extend the domain of J for $I^{(j)}$ defining it by $J(\beta^{(j)}) = \beta_1^{(j)}$ $(= J(\beta)^{(j)})$.

Lemma 2. Let $K \subset I$ be the set of those $\gamma \in I$ for which

$$|\gamma^{(j)}| \leq L_j$$
 $(j=1,\ldots,n)$

simultaneously holds. Then K is a finite set.

Proof. Well known.

For each $\beta \in \mathcal{I}$ let us consider the path

(2.1)
$$\beta$$
, $\beta_1 = J(\beta)$, $\beta_2 = J^2(\beta)$, $\beta_3 = J^3(\beta)$,...

generated by iterating the mapping J. If we iterate $\beta^{(j)}$ according to J, then obviously we obtain

(2.1)_j
$$\beta^{(j)}, \quad \beta_1^{(j)} = J(\beta^{(j)}), \quad \beta_2^{(j)} = J^2(\beta^{(j)}), \dots$$

The sequence $\beta, \beta_1, \beta_2, \ldots$ may contain only finitely many elements outside K (if any), (see Lemma 1), and so it is ultimately periodic (see Lemma 2).

Definition 2. The element $\pi \in \mathcal{I}$ is said to be periodic with respect to the expansion (\mathcal{F}, α) if there exists a positive integer k such that $J^{(k)}(\pi) = \pi$.

Let \mathcal{P} be the set of periodic elements, and let $G(\mathcal{P})$ be the directed graph getting by directing an edge from π to $J(\pi)$, for each $\pi \in \mathcal{P}$.

Lemma 3. (1) \mathcal{P} is a finite set. If $\pi \in \mathcal{P}$, then

$$(2.2) |\pi^{(j)}| \le L_j (j = 1, \dots, n).$$

- (2) G(P) is the union of disjoint directed circles (loops are allowed).
- (3) (\mathcal{F}, α) is a number system in I, if and only if $\mathcal{P} = \{0\}$.

Proof. (1) is a direct consequence of Lemma 1, (2), (3) are obvious.

3. Let us fix an integer basis $\omega_1, \ldots, \omega_n$ in $Q(\Gamma)$. Let

(3.1)
$$\Delta_j := |\omega_1^{(j)}| + \ldots + |\omega_n^{(j)}|.$$

Let $\tau = \alpha_1 \alpha_2 \dots \alpha_n$, $t = |\tau|$. Then $O(I/\alpha I) = t$, thus the size of a complete residue system $mod \ \alpha$ is t. Let $H = \{h_0, h_1, \dots, h_{t-1}\}$ be a complete residue system $mod \ \alpha$. Then for arbitrary choice of $g_i \in I$, the set $\mathcal{F} = \{f_0, \dots, f_{t-1}\}$

defined by $f_j = h_j + \alpha g_j$ (j = 0, ..., t-1) is a complete residue system as well. Then

(3.2)
$$\alpha^{(2)} \dots \alpha^{(2)} f_j = \alpha^{(2)} \dots \alpha^{(n)} h_j + \tau g_j.$$

Since g_j can be chosen from the set $k_1\omega_1 + \ldots + k_n\omega_n$, $k_j \in \mathbb{Z}$, therefore we can always find such an f_j for which

(3.3)
$$\alpha^{(2)} \dots \alpha^{(n)} f_i = T_{1,i} \omega_1 + \dots + T_{n,i} \omega_n$$

satisfies

$$-\frac{t}{2} < T_{i,j} \le \frac{t}{2}, \qquad i = 1, \dots, n; \quad j = 0, \dots, t-1.$$

Let \mathcal{F}_0 be the so constructed set of digits. Observe that $f_0=0$. Hence we deduce that

$$|\alpha^{(2)} \dots \alpha^{(n)}| |f_j| \leq \frac{t}{2} \Delta_1,$$

i.e.

$$|f_j| \leq \frac{|\alpha^{(1)}|}{2} \Delta_1.$$

Observing that the "conjugate equations"

$$\frac{\tau}{\alpha(\ell)}f_j^{(\ell)} = T_{1,j}\omega_1^{(\ell)} + \ldots + T_{n,j}\omega_n^{(\ell)}$$

lead to

$$|f_j^{(\ell)}| \le \frac{|\alpha^{(\ell)}|}{2} \Delta_{\ell} \qquad (\ell = 1, \dots, n)$$

we can get a good estimation for the elements of \mathcal{P} corresponding to the expansion defined by (\mathcal{F}_0, α) , at least in the case if $|\alpha^{(\ell)}|$ are all large enough.

Let $\pi \in \mathcal{P}$. Then

(3.5)
$$\pi = e_0 + e_1 \alpha + \ldots + e_{k-1} \alpha^{k-1} + \alpha^k \pi, \qquad e_j \in \mathcal{F}_0$$

and

(3.6)
$$\pi^{(\ell)} = e_0^{(\ell)} + e_1^{(\ell)} \alpha^{(\ell)} + \dots + e_{k-1}^{(\ell)} (\alpha^{(\ell)})^{k-1} + (\alpha^{(\ell)})^k \pi^{(\ell)}.$$

From (3.6), (3.4) we obtain that

(3.7)
$$|\pi^{(\ell)}| \leq \frac{\Delta_{\ell}}{2\left(1 - \frac{1}{|\alpha^{(\ell)}|}\right)} \qquad (\ell = 1, \dots, n).$$

4. Theorem. Assume that $|\alpha^{(\ell)}| > \max(2, 2\Delta_{\ell})$ $(\ell = 1, ..., n)$. Let $\mathcal{F}(\subseteq \mathcal{I})$ be the set of those integers γ in I for which

$$(4.1) |\gamma^{(\ell)}| \le \Delta_{\ell} (\ell = 1, \dots, n)$$

holds. Then the elements of \mathcal{F} are incongruent mod α . Let \mathcal{F}_1 be the coefficient set getting from \mathcal{F}_0 by substituting $f \in \mathcal{F}_0$ with that $\gamma \in I$, for which $f \equiv \gamma \pmod{\alpha}$, if such an element exists. Then (\mathcal{F}_1, α) is a NS.

Proof. Assume that there exists $\gamma_1, \gamma_2 \in I$, $\gamma_1 \neq \gamma_2$ for which $\gamma_1 - \gamma_2 \equiv 0 \pmod{\alpha}$. Then $\gamma_1 - \gamma_2 = \alpha \eta$, $\eta \in I$, furthermore $\gamma_1^{(\ell)} - \gamma_2^{(\ell)} = \alpha^{(\ell)} \eta^{(\ell)}$. Since $|\gamma_1^{(\ell)} - \gamma_2^{(\ell)}| \leq 2\Delta_\ell$, therefore $|\eta^{(\ell)}| < \frac{2\Delta_\ell}{|\alpha^{(\ell)}|} < 1$, consequently $|\prod \eta^{(\ell)}| < 1$. Since η is an algebraic integer, therefore its norm is a rational integer, it cannot be satisfied.

Thus $\mathcal{F}^{(1)}$ is a complete residue system $mod \ \alpha$, for the elements \tilde{f} of which

$$|\tilde{f}^{(\ell)}| \le \frac{|\alpha^{(\ell)}|\Delta_{\ell}}{2}$$

holds.

Let $\tilde{\mathcal{P}}$ be the set of periodic elements with respect to the expansion (\mathcal{F}_1, α) . Repeating the estimations which were done in Section 3, for $\tilde{\pi} \in \tilde{\mathcal{P}}$ we obtain that

$$|\tilde{\pi}^{(\ell)}| \le \Delta_{\ell} \qquad (\ell = 1, \dots, n),$$

i.e. $\tilde{\pi} \in I$. But $\tilde{\pi} \in I$ implies that $\tilde{\pi}$ is a digit, $J(\tilde{\pi}) = 0$, consequently $\mathcal{P} = \{0\}$. The proof is completed.

5. The exact characterization of those α algebraic integers for which (\mathcal{F}, α) is a NS with a suitable digit set \mathcal{T} seems to be hard.

It is clear that both of the conditions

1)
$$|\alpha^{(j)}| > 1$$
 $(j = 1, ..., n),$

2)
$$1 - \alpha^{(j)} \neq \text{unit}$$

are necessary.

G.Steidl [1] for $\mathbb{Q}(i)$, I.Kátai [2] for imaginary quadratic extension fields proved that 1) and 2) are also sufficient. G.Farkas [3] proved that if α belongs to a real quadratic extension field such that $|\alpha^{(1)}| > 2$, $|\alpha^{(2)}| > 2$, then (\mathcal{F}, α) is a NS with a suitable \mathcal{F} .

References

- [1] Steidl G., On symmetric representation of Gaussian integers, BIT, 29 (1989), 563-571.
- [2] Kátai I., Number systems in imaginary quadratic fields, Annales Univ. Sci. Bud. Sect. Comp., 14 (1994), 91-103.
- [3] Farkas G., Number systems in real quadratic fields, Annales Univ. Sci. Bud. Sect. Comp., 18 (1999), 47-59.

I. Kátai

Department of Computer Algebra Eötvös Loránd University P.O.B. 32 H-1518 Budapest, Hungary Department of Applied Mathematics Janus Pannonius University Ifjúság u. 6. H-7624 Pécs, Hungary