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NUMBER SYSTEMS IN REAL QUADRATIC FIELDS

G. Farkas (Budapest, Hungary)

Dedicated to the memory of I. Kérnyei and B.Kovdcs

1. Introduction

Let Q(v/D) be a real quadratic extension of Q, I be the set of integers
in (@(\/5) Let « € I and A = {0 = fo, f1,..., flg)-1} be a complete residue
system mod «. Furthermore let d = o - @ and @ the conjugate of «.

In Q(v/D) for each 7 € / exists a unique e € A and 7 € I such that
m = am + e. Let the function J : I — I be defined by J(7) = m;.

If 7 € I and 7 = J*(7) holds for some k > 0, we say that 7 is a periodic
element. Let P denote the set of periodic elements.

For some « € I and complete residue system A (mod «) it may happen
that each 8 € I has a finite expansion of form

B=co+era+...+erak,

where ¢; € A, i = 0,1,...,k. Then we say that (A4,a) is a Number System
(NS) with coefficient system A.

I. Katai [1] proved that if o is an arbitrary integer in an imaginary
quadratic extension field Q(iv/D), such that |a| > 1 and |1 — a| # 1 holds,
then (F, @) is a NS with a suitable coefficient set F. Earlier this assertion for
Gaussian integer has been proved by G. Steidl [2].

The purpose of this paper is to prove an assertion in Q(\/l_)) It is a
natural question to find all the possible NS bases in real quadratic extension
fields. This seems to be a hard problem. As a partial result we shall prove our
Theorem.

We remark that
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(1.1) 0 € P.

(1.2) If 7 € P, then J(7) € P. If G(P) is the directed graph defined by = — J ()
for every m € P, then G(P) is a disjoint union of circles.

(1.3) (A, a)is a NS over Q(v/D) if and only if P = {0}.
2. Construction of the coefficient system

If D # 1 (mod 4), then {1,v/D} is an integral basis in Z[v/D], while for
D =1 (mod 4) {1,w} is an integral base, where w = %.
If A is a coefficient system, then for each 8 € Z[v/D] we can write 8 =
= 1o + f, where 8 € Z[VD] and f € A.
Then
Ba = fa+ fid
and fBa= fa+ fid

If D # 1 (mod 4), then a=a+b/D,a=a-b/Dand f = k+1v/D, where
a,b,k,l € Z. Then

fa = (k +1VD)(a - bV/D) = (ka — bID) + (la — kb)v/D.
Let
r=ka—-blD and
s =la — kb.

If D=1 (mod 4), then a = a+bw =a+%+%\/5,07: a+b&=a+%—% D=
=a+b-bw andf:k+1w:k+%+% D, where a,b,k,l € Z. Furthermore

we have

far= (k+l)(@+8) ~ bo) = (a+ Dk + 8022 4 (la — kb,

Now let

r:(a+b)k+b11—’T’@

and s = la — kb.
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Choose the elements of A so that the next conditions are valid for each

k; )
B

e (14l 1dl
(2.1) i, 8; € ( 55|
(2.2) ri=rj (modd) & s;=s; (mod d)<=i=j.

We can do that always. This fact is well known in number theory.
3. Formulation of our theorem and its proof in simple cases

Theorem. Let o be an arbitrary integer in a real quadratic extension
field Q(v/D) such that |a| > 2 and |&| > 2 holds. Then (A,a) is a NS with
coefficient set A constructed in Section 2.

Lemma 1. Ifa € Z or if a = bv/D in the case D # 1 (mod 4) or
a = bw in the case D = 1 (mod 4), then (A, a) is a NS for every eztension

field Q(v/D).

l
for which |,k € (—%, %} Then we can expand each m,n € Z in a NS with

base a and coefficient system {c lce (—l—;—l, %L] } Ifm=3 kia',n =3 Lat,

then
B=m+ nVD = Z(kg + 1,\/b—)a‘
or B=m+nw= Z(kt + Lw)a*

Proof. If o € Z, thena;a+0-\/l—)ora:a+0-w,d=a2,A:{[k]}

is the corresponding expansion of the integers 8 € I. In the case a = b/D
or @ = bw we can make the proof similarly. This completes the proof of the
Lemma 1.

Further we assume, that a # 0, and b # 0.
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4. Investigation of G(P)

Lemma 2. Assume that the conditions of the Theorem hold, and A 1is
the coefficient system constructed in Section 2. Then each nontrivial circle in
G(P), if any, contains an irrational node.

Proof. The proof is indirect. Assume that there exists a circle

Po — P1 — ... = Pk—1 — Pk(= Po),

where p, € P are rational integers v = 0,1, ..., k. We can write

pv = apyi1 + fO.

4.1. The case D # 1 (mod 4)

We have ‘
apy, = dpy 41+ ) + VD,

and from this )
ap, — bp, VD = dp, 41 + ) + s)V/D.

Then

ap, — dpy 41 = ("),
(4.1.1)

—bp, = s,
Assertion 1. |d| > 2|a|.
Proof. Since a + & = 2a, |a| > 2, |a&| > 2, therefore
(4.1.2) 2|a| < |d|
always holds.
Assertion 2. |po| = |p1| = ... = |pr-1]|-

Proof (indirect). Assume that the Assertion 2 is not true. Then there
exists v = | — 1, for which |p;| > |pi=1]. From (4.1.1)

lap,| = dp, + (=] > |dpi| = [P0 > |d]|pi| - %,
1
lap,| > |d| (IPII - 5) pi 1s an integer, therefore

lapy| > |dllpi-1l,  lallpi-1] > |d]|pi-1]
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and this contradicts to Assertion 1.

Assertion 3. No such p € Z N P\{0} ezists for which J(p) = p or
J(p) = —p holds.

If there would exist p — p circle in G(P), i.e. J(p) = p, then
p=ap+f, f€A

whence
ap=dp+r+ svV'D would follow.

We get

a—d<ir<d

Similarly if J(p) = —p, then we get

ld}
d| < —
ja+dl < .
Both cases contradict to Assertion 1, therefore we proved Assertion 3.

4.2. The case D = 1 (mod 4)

Now we get ap, = dp, 41 + ) 4 s(")w, and from this

s0)
2

(a +‘%)pu =dpy41+ r) 4+
(4.2.1)

Assertion 1°. |d| > 2|a + %[

Proof. Since o = (a+ &)+ %VD, a = (a + b) "f, therefore
max(|a|, |&|) = |a + b]+ 'bI\/— D < l whlch implies Assertion 1°.

Assertion 2°. |po| = |p1| = ... = |pk-1].

Proof (indirect). Arguing the earlier we may assume that there exists
v =1 —1, for which |pi| > |pi—1|. From (4.2.1)

(v)

(v 43
a+ lpy| = Y+ -

dpyyr + ) + —’ > |d|lpya| =

b
(a + 2)pl/

(¢+3)

b
= >
S H

3 3
o1 el = | ) = 14 (Il = §) 2 el |
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but this contradicts to Assertion 1°.

Assertion 3’. No such p € Z N P\{0} ezists for which J(p) = p or
J(p) = —p holds.

Proof. Observe that if J(p) = p, then
p=ap+f,

where f € A, from this
ap=dp+r+ sw.

(o) =t

We get

We know that

b || s|_ 3
Py 2l < 2yd).
a+2|< 5 and ‘r+2‘_4|d|
Hence ) dl
id
-\ -d fud
#l|(a+35) - o] > l3
and
s < 3 d
‘”’2'— 714
We got
ld| 3
and from this 3
Ipl < 3

It follows that |p| = 1. The case J(p) = —p yields the same result. Observe

that with these conditions p € A, because if [I;] = [(1)] € A, then
r=a+b
and s=-b
k -1
If[l] = [ 0 } € A, then
r= _(a' + b)s
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and in both cases r,s € (—I—gl—, 1%[] This follows from the inequalities

Id]

bl 1ol
5 >'a+§‘+—2—\/5, D > 4.

Then we can write p = a-0+p, therefore p — 0, i.e. pis not a periodic element.
We proved the Assertion 3’ and the Lemma 2.

5. Estimating the absolute values of the periodic elements

Lemma 3. If D # 1 (mod 4), T =p+ ¢v/D € P, then

(51) < YD
2(1- )
(5.2) 7 < LHVD_

IfD = 1 (mod {), m=p+quw € P, then

14w
(5.3) In| < ,
’ 2(1- &)
) 1+ |@|
(5.4) Il_2(1 )

Proof. We try to estimate the value of fa and fa. We know that if
D # 1 (mod 4), then fa = r + sv/D, where r,s € (—I—;l,%l]. From this

Ifal=|r+svD| < 4 + 4D = KL?M, consequently

(5.5) Ifl < H;mlal,
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and similarly

1+vVD, _

(5.6) 1l < = lal.

Now let 7 be an arbitrary periodic element. Then
m=f+am, where m, € P and f € A.

From this
ra = fa + dnm;.

We will give an upper bound of the absolute value of the periodic elements.
Let m; be such that |m;| = maxzep |z|. Then

"”I S |7I'1|,
Ta — fa
d )
|nllal | |fal
+ NPT
|d| Id|

m| 1+ VD

™ =

71| <

We can prove the further assertion of Lemma 3 in a similar way.

Lemma 4. If 7 = p+ ¢v/D in the case D # 1 (mod 4), or 7 = p + qw
in the case D = 1 (mod 4) is a periodic element, then neither |q| > 1 nor
lg| >0 & |p| > 0 holds.

Proof. If D # 1 (mod 4), Lemma 3 implies that |7| < 1+ /D and

|7| < 1+ +v/D. Hence max(|x|,|7]) = |p| + l¢|/v'D < 1+ v/D. The second
assertion is true.

If D = 1 (mod 4) we can proceed similarly. From Lemma 3 it follows
that 7| < 1+ w and |7] < 1+ |@]. If sign(p) = sign(q), then |7| = |p| + |q|w,
lp| > 0 & |g| > 0 cannot hold, because |p| + |¢lw < 1 + w is impossible. If
sign(p) # sign(q), then |7| = |p| + |g@| hold, because @ < 0. |p| > 0 & |g| > 0
implies that |p| + |g@| > 1+ |@|. We got that |p| > 0 & |¢| > 0 cannot hold.
I |p| >0 & |g| > 1, then |7] = |gw| > |2w| > 1 + w. This contradicts to
|m| < 1+ w, therefore we proved Lemma 4.

Hence we know that the irrational node, mentioned in Lemma 4, can only

be VDor —vVDif D # 1 (mod 4) and w or —w if D = 1 (mod 4).
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6. Completing the proof of the Theorem for D # 1 (mod 4)

Assertion 4. If |q1| = |q2| = 1, then J(q1V/D) = qo/D never holds.
Proof (indirect). Assume that J(q;v/D) = ¢2v/D is true, then

41\/52 092\/5+f

for some f € A. We get
qu\/B = aqleb_ - bgyD = dq2\/5+ r+ sVD.

From this it follows that aq; — dg2 = s, whence |ag; — dga| < %. This 1s a

contradiction, because |ag; — dga| > Ii;l. We proved the Assertion 4.

Lemma 5. No such py,ps € ZN P\{0} ezist for which J(p2) = ¢v/D and
J(¢V'D) = p; hold simultaneously, where |q| = 1.

Proof. Assume indirectly
(6.1) J(p2) = qVD
(6.2) and J(¢V'D) = p,

where |g| = 1 and py,ps € ZN P\{0}. Then from (6.1) p = dgv/D + f for
some f € A, whence

aps = apy — bpaV'D = dgV'D + r + sVD.
We get bpy + dg = —s and from this it follows that

_ |d| _ |d|
|bpa| = | — s — dg| > |d| 5 =5

Hence
(6.3) 2|bp2| > |d|.

On the other hand max(|al,|a]) = |a| + |b|VD < I% implies that |d| > 2|a|+
+2|b]v/D. Thus from (6.3) 2|bpa| > 2|a| + 2|b]v/D follows. We get |ps| — VD >

%Z—:, and from this

(6.4) lp2| > VD.
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From (6.2) we get that gv/D = p; + f', where f’ € A. Hence
aqvVD = av/Dq—bDq = dp, + ' + s'VD.
Hence dp; + bDq = —r'. If we assume that |p;| > VD, then

|dp1| > (la| + 2/6|VD)VD > |bD|, and

|d]
2

holds. We got that |d|(|p1| — &) < |bD], but this contradicts to |p1| > VD,
therefore we can state that |p;| < vD.

Observe that if our directed circle contains a transition of type p; —
— /D — pi, or a transition p; — (—v/D) — pi, then it must contain a
transitiont; — t5, where ¢1,t; € ZNP\{0} and |¢;| < |t2]. It is clear, because in
the case p; — qv/D — p; we have |p3| > |p1|, and on the other hand ¢v/D — p,

implies that |p2| < VD, and this contradicts to |ps| > v/ D. But, if there exists
t; — to, transition with the abovementioned conditions, then t; = aty + f

holds from some f € A. We get at; = at) — btyV/D = dty + 7 + s\/ﬁ, whence

> | =r'| = |dp1 + bDg| > |dp:1| - |bD|

d
(65) |at1 - dtg! S %

Since |d| > 2|a| and [tz] > |t1] hold, consequently |at; — dta| > '—‘2!1, and this
contradicts to (6.5). We proved the Lemma 5.

We know from the Lemma 2 that there no exists nontrivial circle in G(P),
therefore P = {0}. This completes the proof of the Theorem for D # 1 (mod
4). '

7. Completing the proof of the Theorem for D # 1 (mod 4)

Assertion 5. If |q1]| = |g2| = 1, then J(q1w) = qow never holds.

Proof (indirect). Assume that |g;| = |¢2| = 1 and J(q1w) = gow is true,
then
Q1w = agaw + f
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where f € A. Thus @qiw = dqow + 7 + sw. From this we get that

1 a+b b d s
B D) q1 491 2‘12—5,

whence

|d|

lag: — dga| = |s| < 5

From |a| = |a+bw| & |&| = |a+bw] it follows that |a] > a or |&| > a, therefore
|d| > 2|a] and then |aq; — dgo| > |—g—|. This contradicts to |ag; — dgz| < .

2
Hence the Assertion 5 follows.

We got that there are not w — w, w — (—w), (~w) = w, (-w) — (—w)
transitions. Therefore we must to verify only those circles, which contain
ps — z — pi transitions, where p;,ps € P are rational integers and |z| = w.

Lemma 6. No circle of periodic elements exist, which contain p; — z —
— p; transilions, where |z| = w and p;, ps nonzero rational integers.

Proof (indirect). Assume there exists p — qw — p; with the above-
mentioned conditions, further |¢| = 1 and p;, p2 # 0. Then, from qw = ap; + fi
it follows that

1 b b 81

(7.1) 24 (‘H' 5) _QZD_dPI—TI'F?;
) 1 b b a s
(72) go(e+3)-0g=05=%

and from py = aqw + fo we obtain

7.3 b gt 2
(7.3) a+2 P2—gqg =T2% 5,
b d_82

where fy, f» € A. (7.4) implies that

d ‘ S b d d
Dl-tl—1=—=12 ===l =|=I-
~|b b1~ |d 2b 2b

On the other hand assume that there is an arbitrary 7 € P, 1= p+ 0 -w for
which |p| > w. Since 7 € P, # € P and |7| < 1 + |@|, therefore |p| < 1+ |@].

qd+32

el =|
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Hence |p| < 1 — & = w. This is impossible, therefore we can state in a concrete
case that |ps| < w. We get

|d]
(7.5) w > |p2| > M

We have e = a+ 2+ 3vVD,a=a+ -g- - %\/D— Observe that either |a| >

> |2+ %\/ﬁ] or |a| > Ig + %\/BI holds with the exception of two cases:
(7.6) b>0&a>2&a<-2&a<0,
(7.7) b<0&a<-2&a>2&a>0.

If neither (7.6) nor (7.7) hold, then |d| > 2|bw| > 2|bjw. This contradicts to
(7.5).

If (7.6) or (7.7) are valid, then |a+ 2| < '—gl\/—]j— 2, because either a + 2+
+:VD>2&a+t-4VD<-20ra+t+2VD<—-2&a+i-4VD>2
are true. Hence (a+ )2 < ]%D — 2|b|v/D + 4|, therefore we get

(7.8) |d| > 2|b|V/D — 4.
Then (7.5) and (7.8) imply, that 2|bjw > |d] > 2|b|v/D — 4, from this we get

(7.9) 0> [o|(VD = 1) — 4.

(7.9) never holds if D > 21 or D > 5 & [b| > 1 or in the case D =5 & |b| > 3.
This the exceptional cases remainded to prove.

(1) D=5 & |b| = 1. Then (7.6), (7.7) imply that a > 0 & a < 0, but this
is impossible.

(2) D=5 & |b] = 2. Then from (7.6) a = —1 follows, and from (7.7) we
obtain @ = 1. Subtracting (7.1) from (7.2), we deduce

b b
QZD‘*'dPl —QZ = -7y,

from this we have ;
QZ(D ~1)+dp; = -1,

whence

59

ld|

b
(7.10) 97(D=1)+dpy| <

|
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Hence |a| = 1, [b] = 2, sgn(a) # sgn(b) and D = 5 hold, therefore |¢3(D — 1)+
+dp1] > |dp1| — |q%(D —1)| = |5p1| — 2 > 3. But l—g—' = 2.5 and this contradicts
to (7.10).

(3) D =5 & |b] = 3. Then from (7.6) and (7.7) it follows that |a| = 1
or |a| = 2. Hence |d| = 11, therefore |q%(D —1)+dpi| > |11p1| — 3 > 8, and
% = 5.5. This also contradicts to (7.10).

(4) 13< D <21 & {b| = 1. From (7.6) we obtain that

(7.11) e>2-1_Lup
2 2
and from (7.7)
1 1
(7.12) a<—2+§+§\/5
follows.

Observe that (7.11) contradicts to (7.6), because 2 — 3 — 1v/D > —1 and
(7.12) contradicts to (7.7), because =2+ 1 + $v/D < 1.

Since we conducted to contradiction in all cases, we obtained that neither
p2 — w — p; nor py — (—w) — p; transition exist. We proved the Lemma 6.

Hence a circle of periodic elements contains only rational integers, and the
Lemma 2 implies that P = {0}.

The proof of the Theorem is completed.
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