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ON ADDITIVE FUNCTIONS WITH RESPECT
TO THE EXPANSION OF REAL NUMBERS
INTO GENERALIZED NUMBER SYSTEMS
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To the memory of Imre Kornyet

1. Introduction

Let N # 0,%1 be an integer, A = {ao = 0,a1,...,a;-1}, t = |[N| be a
complete residue system mod N. Let H(C R) be the set of those z which
can be written as ¢ = z;i_oo eoN™, where ¢, are taken from the digit set

A, (en € A, n=1,2,...). It 1s clear that

a 1
H=|]J (_1\7+_1\7H)’
acA

i.e. H is the attractor of the iterated function system fo, fi,..., fi—1, where
_9 1

Let M = Upoo(N'H), i.e. the set of those z € R which can be written in
the form

k
(1.1) z= Y &N", e €A

n=-—00
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A function F defined on M is called additive (with respect to A and N),
if F(0) =0, and for each z € M

k

k
(1.2) F(z)= Y, F(enN"), > IF(eaN™)| < 00,

n=-00 n=-—-00

where ¢, are taken from (1.1).

Let £ be the linear space of additive functions. A system (A, N) is called
a number system if each integer n can be written in finite form as n = co+
+eiN+ ...+ Cka, ¢ € A.

The following assertions are proved in Katai [1].
(1) H is a compact set.
(2) (A, N)is a number-system if and only if M = R.
(3) For each y € R there is an n € Z and z € H such that y=n + z.
(

4) LetTy={y|vy=eo+e1iN+...+&N', g€ A}. Then (A=), CT, C
CTy... Let T = JIy. It is clear that M = |J ¢r(y + H). Let A be the
Lebesque measure. Then

MH+mNH+72)=0
holds for each 1,72 € T, v1 # 7v2. If (A, N) is a number system, then

I' =7 and
AMH+n1NH4+n)=0

for each ny,ny € Z, ny # ns.
(5) (A, N) is called a just touching covering system (JTCS), if

MH+nmNH+ny)=0

holds for each ny,ns € Z, ny # n,.

It was proved by K.-H.Indlekofer, I.Katai and P.Racské [2], [3], that (A, N)
isa JTCS if and only if I' =" = Z, i.e. if each integer n can be written as

n=co+c1N+...4+cxNF,
Cj€B=.A—-.A.

(6) Let S(m) be the set of those integers n(# m) for which H+mnNH 4n # 0.
It is obvious that S(m) = m+S(0). S(0) is nonempty, since in the opposite
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case {H +n | n € Z} would be the union of mutually disjoint compact
sets, which contradicts to (3). Let S := S(0).

(7) Lety€eS, By=HNH+7y, B=U,csBy. f z1 € By, then z; — 7y =:
=: z3 € H, consequently 2y = Y o2 e,N7", 20 = Y oo el N7 with
suitable digits €,, €}, € A. Thus for 6, = €, — (€ B) we have

(1.3) y=6 -N1+6N"2+. ..

On the other hand, if ¥ has an expansion of form (1.3), and 6, = €,—
—€l, €y,€l, € A, then z; := Y 2 &,N™¥ € B,. Consequently the
elements of By can be determined by giving all the expansion of v in
the form (1.3) and solving the equations 8, = €, — €}, €,,€), € A.

Let ¥ € S and X be such an integer for which AN = v+ é holds with some
6 € B. Then either A = 0 (it occurs only if —y = b € B) or A € S. Indeed,
if ¥ has the expansion (1.3), then

Let the directed graph G(S) be defined as follows: for each v € S and for
each A # 0 such that AN =y +6, § € B let us direct an edge from A to v,
and let us label this edge by §.

(8) If (A,N)is not a JTCS, then B = H.

2. Characterization of additive functions. General case

We guess that for each (A, N) the additive functions are linear ones, i.e.
L={F(z)=cz | ceR}.
Let F € L. We observe that for each | € Z the function
Fi(z) := F(zN")

belongs to L.

Lemma 1. Let v € S. Then for 61,62 € T such that 6, — b3 = v the
difference
F(61) = F(82)
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does depend only on v. If (A, N) is a number system then
(2.1) F(y+h)—=F(h)=F(y)

holds for each h € Z and v € S.

Proof. Let 6, — 6y =7, 6] — 65 =, 61,67,62,65 €. Let £;,z3 € H be
such numbers for which z; + 6; = z2 + 2. Then F(z; + &;) = F(z;) + F(4:),
whence F(&l) + F(Il) = F((Sz) + F(Ig), 1.e. F(l‘z) - F(JL’]) = F(él) - F(&g)
Since z; + 67 = z2 + 65 holds, therefore

F(.‘l?z) - F(:L‘l) = F(&;) - F(éz),

consequently the first assertion is true.

To prove the second assertion, we should observe only that ' = Z, if
(A, N) is a number system. The proof is complete.

Let S* = SU{0}. Let us extend the graph G(S) to G(S*) by drawing the
edges 0 —(9 0, and for each b€ SN B, 0 —(=¥) b. For y € S* let

A(y) = Fi(d1) — Fi(d2),

where dy,dy € T such that d; —dz = 4. From Lemma 1 we know that the right
hand side does not depend on the special choice of d1,d;. Let 7 denote the set
of labels occurring in the set of labels of G(S*).

Lemma 2. Let v, € S* such that y —®) 5. Then for each ay,a, € A
such that ay, — a, = b the difference Fi(ay) — Fi(a,) depends only on | and b.
Let

F(b) := Fi(ay) — Fi(ay).

Furthermore we have

Ai(7) = F21(6) + Ai-i(n)-

Proof. Let ¥ € 5* and 4;, 65, . .. be an arbitrary sequence of labels getting
by walking on G(S*), starting from v. Let & = e; — fi,ei, fi € A,dy,d2 €T
such that dy —dy = . Let 2 = 3 00, #%,¥y= Y 1oy jN—‘, Then d, —dy =z -y,
ie. di+y=dy+z,z,y € H, consequently Fi(dy)+ Fi(y) = Fi(d2) + Fi(z), i.e.
Ai(y) = Fi(z) - Fi(y) = Fi-i(Nz) - Fio1(Ny) = Fioa(er+21) = Fioa(fi +m),
where z1 = Y 00 75T, U1 = Y oios ‘1\7‘;':7

The right hand side of the last equation can be rewritten as Fi_;(e;)—
—Fi_1(f1) + Fi1(z1) — Fi—1(y1). We observe that Fi_y(z1) — Fi—1(y1) may
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depend only on n = z; — ¥, and that it is A;_1(n). Consequently F;_;(e;1)—
—F;_1(f1) depends only on b, and so

Ai(7) = FZ1(0) + Ai-1(n).

This completes the proof of the lemma.
It is obvious that Aj(—vy) = —A(y).

Lemma 3. 7 is the set of those b € B for which there is an n € S* such
that —b =n (mod N).

Proof. Clear. If b € 7, then there is v,7 € S* such that N, = b + 7,
consequently —b = n (mod N). On the other hand if € S, then for —b =
=17 (mod N), b € B we have that

b n .
=ty e
le. beT.

Example 1. Let A = {0,1,...,N—1}. Then B={—-(N -1),...,N—1}
and G(S*) is the following:

(N-4) (0) (n-()

% o}

Hence we have A;(0) = Fy' (—1) + Ai—1(1), Ai(1) = F2 (N = 1) + A1 (1).
From the first equation we obtain that A;(0) = 0, and that Fi_;(k) — Fi_1(k+
+1)+A;(1) =0for k=0,1,...,N -2, ie. Fi_i(k) = kA;_1(1), whence
Fr (N—=1)=F_1(N-1)=(N-1)A;_1(1), and so Ay(1) = NA;-1(1), (I €
€ 7), consequently A;(1) = N'Ag(1). Thisimmediately implies that F(kN') =
= Fi(k) = kN'Aq(1), i.e. F(z) = cz for each £ € M, where ¢ = Ao(1).

Example 2. Let N = 3, A = {0,1,5}. Then B = {0,+1,+4,+5},
S* = {0, 41, £2}, and G(S*) is the following:
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o 2 | )

2\
\g (s
@ 2
. - (0 ) (-4) — |
N = e
(W)

Consequently we have 0 = Ay(0) = F7 (1) — Aimi(1) = Fio1(1)-
-—Az_l(l), A[(—l) = F{‘_l(—l) + A1_1(—2), l.e. A{(l) = Fz_l(l) + A{_1(2),
A1) = FZ1(5) + Aima(=2), Ai(2) = F_ i (4) + A-a(2), A1) = FLy (9+
+A)._1(—1), A}(Q) = F1*_1(5) + Al_l(l).

Hence we obtain that Fi_1(5) — Fi—1(1) + Aj—1(2) = Fi-1(5) + Ai—1(1),
whence A;(2) = 2A,(1) = 2F1(1) follows. After substituting we can express
all the numbers F;*(b) in the terms of Fy*(1) : I7(1) = Fi—1(1) + 2F-1(1) =
= 3F1_1(1), A}(l) = 3A1_1(1), F1_1(5) = AI(l) -+ A;-1(2) = 5F1_1(1), whence
we get that F(a-3') = a-3'F(1) for a € A and | € Z. This implies immediately
that F(z) = cz holds for all z € M.
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3. Additive functions for number systems

Theorem 1. Assume that (A, N) is a number system. Then F € L
implies that F(z) = cz for z € R.

The proof is based upon the following lemmas. Let S = {y1,¥2,...,7r},
D = ged(y1,72,---,7r), where ged is the shorthand of the expression greatest
common divisor.

Lemma 4. We have
Fi(Dk) = ckDN',  Fi(Dk + u) = F;(Dk) + Fi(u)

for each k,l,u € Z, where c is a suitable constant.

Proof. Let 4; € S. Since (A, N) is a number system, therefore y;+h,h € T
holds for each h € Z, consequently by Lemma 1 we obtain that Fi(y; + h) =
= Fz(’yi)-f-F](h)A Then for each k € N, Fi((k+ 1)y +h) = Fi(kyi +h)+F1(7¢),
whence one can prove by induction that Fi(kvy; + h) = kFi(y:) + Fi(h). It is
clear that S = —S, i.e. v; € S implies that —y; € S. Thus Fi((—=k)y: + h) =
= Fi(k(—)) + F(h) = EFy(—7) + F(h), and by 0 = Fi(x: + (—%)) = Fi()+
+F1(—%;) we obtain that Fi(ky; + h) = kFi(vi) + Fi(h) holds for all k € Z.

Hence we obtain that for each u,ky,...,k, €Z

Filkini+ ...+ ke +u)=F)+kiFi(n)+ ...+ k- Fi(r).
Since D = t17; + ...+ t,7, with suitable integers t1,1%3,...,t,, therefore
F)(Dk? + u) = F1(‘u) + kF[(D)

holds for each k € Z and u € Z. Applying this relation with u = 0, we obtain
that

Fi(kD) _ F(D) _ Fioy(ND) _ \ Fiea(D) _ NFi_a(kD)
kD - D D D -~ kD

The proof of the lemma is completed.

Proof of the theorem. If D = 1, then Lemma 1 implies the fulfilment
of the theorem.

Assume that D > 1. Let F(z) := F(z) — cz, where c is the constant
occuring in Lemma 4. Then Fj(z) := F(zN') satisfies the following relations:

Fy(Dk + u) = Fy(u) for u,k € Z.
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Let D* be the smallest positive integer for which Fj(D*k + u) = Fy(u) for each
u, k € Z holds. Then (D*, N) = 1. Let us assume indirectly that (D*, N) = A,

and that A > 1. Let ug € Z, u; = ug +t%—‘. Then
N ~ N . . N
F1+1(u1) =F (NUO +tKD ) = F[(NUQ) = F1+1(‘UO),

consequently
£ (I—):lc + u) = Fi(u)
A
which contradicts to the minimality of D*.
So we have 1 = (D*,N). Then 1 = kD* + tN with suitable k,t € Z.
Furthermore (¢, D*) = 1. Hence m = kmD* + tNm, Fi(m) = Fi(kmD*)+

+F(tNm) = Fi41(tm). Applying this relation ¢(D*) - times, where ¢ is the
Euler-function, we have

Fz(m) = Fl+¢(Do)(tw(D.)m).

Since t#(P") = 1 (mod D*), therefore the right hand side of the last equation
is

F]_H,(D-)(m).
We deduced that
Fy(m) = F,_W(D.)(m)
holds for each m € Z and s = 1,2,.... Consequently it holds for each a € A.
Taking the limit for s — oo, we obtain that Fy(a) = 0 for every | € Z and
a € A. Consequently F(z) = 0 identically. The proof is completed.
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