Annales Univ. Sci. Budapest., Sect. Comp. 17 (1998) 33-48

A MORE EFFECTIVE VERSION
OF ALGORITHM A

T. Asvényi and T. Gregorics (Budapest, Hungary)

Abstract. The algorithm A is one of the most important search techniques
of the artificial intelligence. This heuristic search algorithm always finds
a solution even in infinite problem space if there exists a solution at all.
When the heuristic information applied in this algorithm satisfies a special
property, i.e. it is admissible, then the solution found is optimal. (We call
it algorithm A*.) In this paper a more effective version of algorithm A is
presented and analysed. At first a new version of the general graph-search
algorithm will be defined. The well-known heuristic search algorithms
(algorithm A, algorithm A*, algorithm A€) can be introduced in the same
way as for the original graph-searching. We will show that these algorithms
preserve their main properties, except the algorithm A* finds only nearly
optimal solution. Finally some conditions on finding the optimal solution
are going to be given.

1. Introduction

A number of problems in the Artificial Intelligence (Al) area can be related
to the general problem of finding a path through a space of problem states from
the initial state to any goal state. In this state-space representation any problem
can be treated as a directed graph. Obtaining a solution to such a problem
means finding a path in this representation graph from the start node to a goal
node.

Several search techniques have been developed, which use heuristic infor-
mation, 1.e. special knowledge available from the problem domain in order
to solve this search problem in efficient way. Among the heuristic graph-
searching algorithms we have the class of the algorithm A. When the heuristic
information built into the algorithm A satisfies the condition of admissibility

34 T. Asvanyi and T. Gregorics

then it always finds an optimal (cheapest) solution. The name of this algorithm
is algorithm A*. Furthermore, we make a strict distinction between algorithm
A and algorithm A*. A less-widely known property of algorithm A is that it
can find the solution (path from the start node to a goal node) even in infinite
representation graph, if a solution exists. [3].

In this paper a more effective version of algorithm A is presented and
analysed. Before introducing this new version we give a brief overview of the
general graph-search technique and their well-known subclasses. The basic
terminology and notations are also presented. An eager version of graph-
searching is defined and its properties are proved in the third chapter. In the
fourth chapter the algorithm A, A* and A€ of the new version are introduced.
It will be shown that their properties are preserved, except that algorithm A*
finds only nearly optimal solution. In the fifth chapter the conditions on finding
the optimal solution are going to be given.

2. Overview of the graph-searching

The classical graph-search algorithm is going to be defined. Depth-first-
search, breadth-first-search, uniform-cost-search, Algorithm A, A* and A°¢ can
be defined as special cases of it, changing its evaluation function (f) for getting
algorithms with different desired features [2].

2.1. Notations

The proofs of the theorems presented later in this paper require a special
terminology. Now the main notations are defined without explanations. More

¢

detailed description can be found in [2].

R =(N,A) - Ris a directed graph, N is the set of nodes, A is the set of arcs.
We suppose that R is a ”é-graph”. (There are only a finite num-
ber of arcs outgoing from each node and every arc has its own
cost, which is higher than a given positive § value.)

s, T - s is the start node and 7' is the set of the goal nodes.

(n,m) - directed arc from node n to node m.

(no, ..., nk) - the directed path from node ny to node ny through ny, ..., ng_.
The length of this path is k£ by definition.

ng — ng - a directed path from node ng to node ny.

P(n,m) - the set of the directed paths from node n to node m.

A more effective version of algorithm A 35

d*(n) - the length of the shortest path from s to n.

N(K) - the set of nodes n where d*(n) < K. N(K) is a finite set,
because R is a ”§-graph”.

c(n,m) - cost of the directed arc from node n to node m.

k(n,m) - cost of the directed path from node n to node m, by definition

it is the sum of the costs of the arcs of it.
P(K,n,m) - the set of the directed paths from node n to node m where
k(n,m) < K. P(K,n,m) is a finite set, because R is a ”é-graph”.
k*(K,n,m) - cost of the cheapest path from node n to node m where
k(n,m) < K, that is k*(K,n,m) := min{k(n, m)|(n — m) €
€ P(K,n,m)}.
k*(n,m) - cost of the cheapest path from node n to node m, that is
k*(n,m) := min{k(n, m)|(n — m) € P(n,m)}, if P(n,m) is not
empty. If there is no path from n to m then k*(n, m) := oco.

g"(n) - g7 (n) = k"(s,n).

h*(n) - h*(n) := min{k*(n,t)|t € T}. If there is no path fromn to T
then h*(n) = co.

fr(n) - the cost of the optimal solution through n, i.e. f*(n):= g*(n)+
+h*(n).

g(n) - is the cost of the cheapest path found from s to node n.
g(n) > g*(n).

p(n) - is the pointer referring to the parent of n on that path.

f(n) - is the value of the evaluation function of node n.

G - is the search graph.

OPEN - is set of the open nodes.

r - The expansion of a node n is the set I'(n). It means the set of

its successors, according to the directed arcs going out from node n.
2.2. General graph-search algorithm

The general graph-search algorithm (called GS here) [1][2][3] with minor
formal modifications is the following:

function GS(s: node) return node U {fail} s
G, OPEN, M: node set;
m: node;
begin
1. g(s) :== 0 ; p(s) := null;
2. G :={s}; OPEN := {s};
3. loop
4. n := miny(OPEN); OPEN := OPEN \ {n};

36 T. Asvanyi and T. Gregorics

5 if n 1s a goal state then return n;

6. M :=T'(n); /* expansion */

7. form in M loop

8 if mg G or else g(n) + c(n, m) < g(m) then
9. g(m) := g(n) + ¢(n, m); p(m) :=n;

10. OPEN := OPEN U {m}; G := G U {m},
11. end if;

12. end loop;

13. if OPEN is empty then return fail; end if;

14. end loop;

end GS;

This algorithm discovers the representation graph of any problem starting
from the start node s step by step. The subgraph that has been traversed at
any stage is called search graph (G). It contains two kinds of nodes; the closed
nodes and open nodes. The node that has already been expanded is the closed
node. The one that has been generated but not expanded or put back into
OPEN (GS.8-11) and not expanded from that time is the open node. Every
node has three important attributes besides of the description of the actual
state, namely the values of g (cost function), p (pointer), and f (evaluation
function). Let g(n) be the cost of the cheapest path found by algorithm from
s to node n (see GS.8-9). Let p(n) be the pointer referring to the parent of n
on that path. Let f(n) be the value determining the selection of the node to
be expanded (see GS.4). The algorithm terminates if a goal node is selected
for expansion or there are no open nodes.

Taking stricter and stricter conditions on the evaluation function f we get
several classes of graph-search algorithms. When f(n) = g(n) + h(n) for any
node n, where h(n) is a nonnegative estimate of the cost required to get from
n to any goal node, then the algorithm is called algorithm A. In other words,
f(n) is an estimate of the total cost of the cheapest solution path going through
node n. We know that the algorithm A always finds a path from the start node
to a goal node, if such path exists [2, 3]. When h(n) is a lower bound to the cost
of the minimal path from n to the nearest member of the goal nodes, then we
call it algorithm A*. It is a well-known fact that this algorithm is admissible,
l.e. it always finds an optimal (cheapest) path from the start node to a goal
node, if such path exists [1]. An algorithm A* is a consistent algorithm (A¢), if
the heuristic function h satisfies the monotone restriction (that is h(n) — h(m)
is smaller than or equal to the cost of all arcs going from n to m). It does not
expand any node two or more times [4][5].

A more effective version of algorithin A 37

3. An eager graph-search algorithm

Now we are going to define an eager version of GS, which is more effective
than the original one. We will show that its main properties remain true; it
terminates in finite representation graph, and finds a solution if it exists.

3.1. The new version

The eager version of GS called GE is defined as follows:

function GE(s: node) return node U fail is
G, OPEN, M: node set;

m: node;
begin
1. g(s) :==0; p(s) := null
2. ifsis a goal state then return s; end if;
3. :={s}; OPEN := {s };
4, loop
5. n := min;(OPEN); OPEN := OPEN \ { n };
6. M :=T(n); /* expansion */
7. form it in M loop
8. if mgG or else g(n) + ¢(n, m) < g(m) then
9. g(m) := g(n) + ¢(n, m); p(m) :=n;
10. if m is a goal state then return m; end if;
11. OPEN:=OPENU{m};G:=GU{m};
12. end if;
13. end loop;
14. if OPEN is empty then return fail; end if;
15. end loop;
end GE;

In GS a goal node is recognized, when it is selected from the OPEN set. In
our version the solution is found eagerly: when a node is generated, first it is
checked, if it is a goal node. If it is not, it can be processed. The two algorithms
are the same except the place of the termination condition, therefore the set
of expansions done and the set of nodes generated by the eager version are
subsets of the appropriate sets of GS.

38 T. Asvényi and T. Gregorics

GE terminates, when the first goal node is generated. GS terminates when
a goal node is taken out from OPEN. A whole "level” of nodes is expanded
and the next whole "level” is generated between the two actions by GS, when
the first goal node is generated and when it is selected for expansion. The
space complexity of a graph-search algorithm depends on the number of nodes
generated by the algorithm. The time complexity of it depends on the number
of expansions performed by it. Therefore, depending on the speed of the
expansion of G, GS might need even two or more times more space. and even
two or more times more computing time than GE.

3.2. The properties of the GE

The algorithm GE preserves the most important properties of GS.
Lemma 3.1. The number of expansions is finite for any n € N node.

Proof. If n = s then n is expanded only once, because its initial g value
is minimal. If n # s then n has some g value, for example g(n) = K, when 1t
is generated for the first time. Therefore g(n) cannot be reduced and n cannot
be put back into OPFEN more than |P(K,s,n)| times. (P(K,s,n) is finite.)

Consequence 3.2. GE always terminales if the accessible part of the
state-space-graph (from s) is finite.

Lemma 3.3. (An invariant of GE.4 and GE.14) Ifn € N has not yet
been expanded then for any optimal s —» n path there is an m element of that
path, so that:

a)me OPIN;

b) each of the elements on s — n preceding m is closed and has an optimal
g value;

¢) m also has its optimal g value (g(m) = g*(m)).

Proof. First m = s. Later we can assume that there are some closced
nodes on that optimal s — n path and s is closed. Let m be the first open
node on s — n. Let m be the first open node on s — n. Let z be the node
exactly preceding m.

Each node on s = ng, ny,...,nx = z is closed and their g value i1s optimal:
Let us assume indirectly, that 35 € 0..k : n; is closed, g(n;) > g*(n;) and
Vie0..j—1: g(n;) =g¢"(n;). Then j # 0, because g(s) = 0 = g*(s) (GE.1).
When n;_; was expanded last time, its g value was optimal. So n; got its
optimal g value (GE.9), unless n; had got its optimal g value before. This
consequence contradicts with the assumption.

Therefore, when z was expanded last time, m got its optimal g value,
unless m had already got its optimal g value before.

A more effective version of algorithm A 39

Theorem 3.4. If there is a path from s to a goal node and from s the
accessible part of the state-space-graph is finite, then GE terminates by finding
a goal state.

Proof. If s is a goal node, it is trivial. If s is not a goal node, it is enough to
prove, that some time a goal state is chosen at GE.10. Otherwise the algorithm
must terminate at GE.14. Supposing this indirectly, let n be a goal state and
s — n be an optimal path from s to n. When it terminates, n has not been
selected for expansion. (Otherwise, GE should have had terminated at GE.10.)
Because of the previous lemma, there is always an m € OPEN on s — n at
GE.14. Therefore GE cannot terminate at GE.14 and cannot terminate at all.
This result contradicts with 3.2.

4. The eager version of algorithm A

The algorithm A and its subclasses (algorithm A*, algorithm A¢) are the
most important members of graph searching algorithms. They can always find
a solution even in infinite problem space, if there exists the solution. In other
hand they are heuristic algorithms so they take advantage of the fact that
most problem spaces provide, at relatively small computational cost, some
information (heuristic) that distinguishes among nodes in terms of likelihood
leading to a goal state.

Now we will introduce the algorithm A, A*, A€ of our eager version, and
prove their main properties.

4.1. Algorithm AE

Algorithm AE is derived in the same way from GE, as algorithm A is
derived from GS.

Definition 4.1.1. Algorithm AE is defined by f(n):=g(n) + h(n),
where the only restriction on the heuristic funclion h is the following: Vn €
€N : h(n)>0.

Lemma 4.1.2. If algorithm AL does not terminate, each of the open
nodes is ezpanded in a finile number of steps.

Proof. For any n € N: f(n) = g(n) + h(n) > g(n) > g*(n) > d*(n)é,
so f(n) > d*(n)é. Let m be an element of OPEN. K := f(m). If Vn €
€ OPEN\ {m}: f(n) > K then m is going to be expanded. If d*(n) > K/é
then f(n) > K.

40 T. Asvényi and T. Gregorics

N(K/6) is finite (see 2.1.). According to Lemma 3.1, there is a finite
number of occasions, when a node of the set N(K/§) is expanded by GE.
Therefore, there have been only a finite number of expansions before m is
expanded.

Theorem 4.1.3. If there i1s a path from s to a goal node, algorithm AE
terminates and finds a solution. (This solution is not necessarily the optimal
one.)

Proof. Let us assume that n is a goal node that there is an s — n path,
but AE does not terminate. Let s = mg, my,...,my = n be an optimal path
from s to n. According to Lemma 3.3, there is always an m; (0 < i < n) -
at GE.4 and GE.14 - in OPEN, because n is never chosen to be expanded.
(Otherwise, AE should have had terminated at GE.10, because a node can be
put into OPEN only at GE.11). In the beginning, mg is expanded. Then m,
is put into OPEN. According to the previous lemma, m; is also expanded
in a finite number of steps. Then mj is put into OPEN and so on. At last,
my_ is expanded, m; = n is generated and AE terminates contradicting our
assumption.

Because AE terminates, it can terminate at GE.10 or GE.14. Let us
assume indirectly that it terminates at GE.14. When it terminates, n has not
been selected for expansion. Therefore (see 3.3), there is an m; € OPEN
(0 < i< k), so AE cannot terminate at GE.14. This contradiction proves that
algorithm AE terminates at GE.10 finding a solution.

4.2. Algorithm AE~

Algorithm AE* comes from algonthm AE as algorithm A* comes from
algorithm A. Our exact results on its behaviour are shown below.

Definition 4.2.1. An algorithm AE 1s AE*, ifVn € N : h(n) < h*(n)
(h is admaissible).

Algorithm A* is admissible, but, unfortunately, algorithm AE* does not
have this nice feature, i.e. algorithm AE* does not find the optimal solution.
Let us see the next example, where all arcs have unit cost. The heuristic value
of the nodes are 0, except h(k) = 2. Let t and z be the goal nodes. It is clear,
that the algorithm may find z instead of ¢.

In spite of this fact, the algorithm can be recommended to be used, because
it inherits its increased effectivity from GE and its solution is nearly optimal.
The next theorem shows that the cost of the solution found by AE* is near to

the value f*(s).

A more effective version of algorithm A 41

goal

Lemma 4.2.2. /f nodc n is selected by algorithm AE® for expansion, then
f(n) < f*(s).

Proof. We can suppose that f7(s) < co. Let s — t be an optimal solution
path. At GE.4, immediately before n is selected, there is an m € s — t that
m € QPEN and g(m) = g¢*(m) (sce 3.3). n is selected to be expanded,
therefore:

7(n) < f(m) = g(m) + h(m) = g"(m) + h(m) < g (m) + h*(m) =
= f*(m) = [*(s).
Theorem 4.2.3. Let a be a positive constant so that
vieT, V(n,t)€ A: h(n)+ a>c(n,t).
Let t be the goal node found by algorithm AFE™ with h. Then

9(t) < f7(s) + .

AL

Proof. The node t is found by algorithm AE*, when one of its parents is
expanded. Let it be n. Because of Lemma 4.2.2 and GE.9:

F(s)+a> f(n)+a=g(n)+h(n) +a > gn) +cln1) = g(0)

We can notice that o < maz{c(n,t) | (n,t) € A, t € T}. This means that
usually the solution found by algorithim AE” is not much worse than the one
found by algorithm A~. The previous example (see in 4.2) shows that there is
a case when the cost of the solution found is exactly f~(s)+a. Other examples
can be seen at the end of the fifth section.

42 T. Asvényi and T. Gregorics

4.3. Algorithm AE°®

Algorithm AE® comes from algorithm AE as algorithm A¢ comes from
algorithm A: The heuristic function h must satisfy the monotone restriction.
Therefore h i1s admissible, so A is admissible, too, and AE€ is a special casc of
AE* as A€ is a special case of A*, but the only result on the optimality of AE¢
is Theorem 4.2.3. Anyway, it inherits its increased effectivity from GE, and it
does not expand any node twice, like A¢. Therefore it can be recommended to
be used. Our exact results on its behaviour are the following:

Definition 4.3.1. Algorithm AE* is consistent (we call it algorithm AE®),
if h satisfies the monotone restriction, i.e. ¥(n,m) € A: h(n)—h(m) < ¢(n, m)
(m is a successor of n).

The next lemma 1s needed for the following theorem and it will be also
used later.

Lemma 4.3.2. Let us be given an optimal s — t path and the nodes n, m
on that path. If m is a descendant of n and h satisfies the monotone restriction,

then (see [{])
9" (n) + h(n) < 7 (m) + h(m).

Theorem 4.3.3. If AE® selects a node n for expansion, then g(n) = g~ (n).

Proof. We can suppose that n has not yet been expanded. If we can
prove that g(n) = g¢*(n) for the first time, g(n) cannot be reduced later, so
n will not be put back into OPEN. Therefore it cannot be expanded several
times. According to Lemma 3.3, 3m € s — n optimal path that m € OPEN,
g(m) = g*(m). We know (see 4.3.2) that g* + h is non-decreasing on s — n.
Therefore

f(m) = g(m) + h(m) = g"(m) + h(m) < g"(n) + h(n) < g(n) + h(n) = f(n).

If g*(n) # g(n) = g *(n) < g(n) = f(m) < f(n) = n cannot be selected to be
expanded (n,m € OPEN), but the algorithm selects n to expand, therefore

g(n) =g"(n).
Consequence 4.3.4. Algorithm AL° does not ezpand any node twice (or
more).

A more cffective version of algorithm A 43

5. Optimal solution and algorithm AE

If we want to make sure, that algorithm AE* or AE® finds optimal solution,
then we need some extra conditions on its heuristic function detailed below.

5.1. Algorithm AE*

The first algorithm called AE* that finds optimal solution is an algorithm
AE* with a relatively strict condition on the heuristic function: the value of
the heuristic function of the nodes exactly preceding goal nodes gives exact
estimate of the distance to the goal.

Definition 5.1.1. The algorithm AE* is an algorithm AE* whereVt € T,
Y(n,t) € A: h(n) = ¢(n,t).

AEY always finds an optimal solution, if some solution exists. AEY needs
an extra condition compared to A, but it terminates earlier, so it needs less
time and space to run. For example the 8-puzzle with P or W heuristics [2]
provides AEY.

Theorem 5.1.2. If there is a path from s to a goal node then algorithm
AET terminates by finding an optimal solution path.

Proof. AET terminates by finding a solution path because it is an
algorithm AE. When a goal state (namely t) is found, one of its predecessors
(namely n) has been selected to be expanded and

g(t) = g(n) + c(n,t) (GE.9),
f(n) < f*(s) (Lemma 4.2.2),
fX(s) < f*(t) and R*(t)=0 (t€T).

Therefore
g(t) = g(n) + c(n,t) = g(n) + h(n) = f(n) < f*(s) < f7(4) =
=g"(t) +h"(t) = g7(t) < g(t) = g(t) = f7(s).
5.2. Algorithm AE™

The second algorithm called AE™ that finds optimal solution is an algo-
rithm AE® with an extra condition on its heuristic function: difference between

44 T. Asvanyi and T. Gregorics

the heuristic value of the nodes exactly preceding goal nodes and the distance
to the goal is a constant.

Definition 5.2.1. The algorithm AE™ is an algorithm AE® where 3a >
>0:VteT, VY(n,t) € A: h(n) +a=c(n,t).

For example the 8-puzzle with h = P, h = W or h = 0 heuristics [2]
provides AE™.

Theorem 5.2.2. If there is a solution, algorithm AE™ finds an optimal

one.

Proof. Let us suppose that it finds a solution that i1s not optimal. Let it
be s — z. Let m be the parent of z on s — z. Let s — t be an optimal solution
path. It is clear that s # ¢t (GE.2). Let n be the parent of t on s — t. Node z is
found when m is expanded. That time n has not been expanded. (Otherwise ¢
had been found.) Thercfore (based on Lemma 3.3), there is an open node (k)
on s — n, that g7 (k) = g(k).

sart

a goal

goual

f(m) < f(k) = g(k) + h(k), (m 1s selected to be expand-
ed)

g(k) + h(k) = g~ (k) + h(k), (k is on the optimal path
s —1)

g (k) + h(k) < g™ (n) + h(n), (because of Lemma 4.3.2)

g (n) + h(n) = ¢g*(n) + c(n,t) — a, (based on the extra condi-
tion of 5.2.1)

g (n) +c(n,t) —a=g¢(t) — a, (n is on the optimal path
s —1)

g (1) —a < g(z) —a=g(m)+c(m,z) — a, (according to the indirect
supposal)

g(m) + c(m,2) — a = g(m) + h(m) = f(m), (bascd on the extra condi-
tion of 5.2.1)
= f(m) < f(m) >

This contradiction proves the theorem.

A more effective version of algorithm A

The examples presented below show that the conditions of algorithm AE™

are necessary (o find an optimal solution.

If his only adnussible with the extra condition of 5.2.1:

goal

All arcs have unit cost. The heuristic value of the nodes are 0, except
h(k) = 2. t and z arc the goal nodes. It is clear, that the algorithm may find

z instead of .
If A is only monotone without the extra condition of 5.2.1:

goal

All arcs have unit cost. The heuristic values of the nodes are 0, except
h(n) = 1. t and z are the goal nodes. It is clear, that the algorithm may find

z instead of t.
If h is the only constant on the nodes being parents of goal nodes, instead

of the extra condition of 5.2.1:

46 T. Asvényi and T. Gregorics

All arcs have unit cost, except ¢(m,z) = 2. The heuristic values of the
nodes are 0, except h(n) = 1, h(m) = 1. t and z are the goal nodes. It is clear,
that the algorithm may find z instead of t.

Conclusions

In the previous sections we introduced and described a new version of the
heuristic search algorithms. Now we will summarize our results.

Our first remark was that a goal node can be recognized by the graph-
search algorithm when it is generated. This eager version of the graph-search
algorithm (GE) might need even two or more times less space, or even two or
more times less computing time than the original version. It has been showed
that the new version always terminates and can find a solution (if there exists
one) in finite representation graph. These properties are equivalent to the ones
of the original version.

Secondly the algorithm A of the new version (AE) was introduced in the
same way as algorithm A is derived from the original version. It has been
proved that almost every property remains true. Algorithm AE always finds a
solution even in infinite representation graph, if the solution exists. The well-
known subclasses of algorithm A (namely algorithm A", algorithm A€) can
be also derived from algorithm AE. They are called AE™ and AE®. The only
difference between the eager versions and the original ones is that the eager
versions (AE* and AE€) cannot find optimal solution.

Although the main purpose of this paper is to show the condition of finding
optimal solution a very interesting extra additional result has been given. We
proved that the cost of the solution found by algorithm AE" is never greater
than the sum of the optimal cost and the cost of the most expensive arc going
to the goal. In practice it means that the cost of the solution is necar to the
optimal cost.

A more effective version of algorithm A 47

At last the criteria of finding optimal solution was presented. Two
algorithms were defined. The algorithm AE? is a subclass of algorithm AE*
where the value of the heuristic function of the nodes exactly preceding goal
nodes gives exact estimate of the distance to the goal. The algorithm AE™ is
subclass of algorithm AE€® where difference between the heuristic value of the
nodes exactly preceding goal nodes and the distance to the goal is a constant.
Although these conditions seem to be very strict, many problems have the
heuristic function that satisfies them. The extra condition of AE™ is weaker
than the one of AE*. In order to decide that an algorithm AE is algorithm
AES®, it i1s sufficient to see that the heuristic function satisfies the condition of
the monotone restriction and takes zero on each goal node [4]. Many times it
easier to find a heuristic function of this kind than heuristics that are lower
bound on h* (generally not known). Therefore algorithm AE™ may be used
better than algorithm AET. There is an interesting conclusion on the non-
heuristic graph-search algorithms. If there is a constant ¢, so that Vi € T,
V(n.t) € A: ¢(n,t) = c, then the eager version of the uniform-cost strategy,
which is algorithm AE with h = 0, finds optimal solution. The eager version
of breadth-first-search also finds optitnal solution, because it is a special case
of the uniform-cost strategy, so that Y(n,m) € A: ¢(n,m) = 1.

In summary, the algorithm AE can be recommended for use, because
it inherits its increased effectivity from GE. In addition, using admissible
heuristic function the solution found is nearly optimal, and taking one of the
extra conditions on the heuristic the new version of algorithm A finds optimal
solution.

References

(1] Hart P., Nilsson N.J. and Raphael B., A Formal Basis for the
Heuristic Determination of Minimum Cost Paths, IEEE Trans. System,
Man and Cybernet., 4 (2) (1968), 100-107.

[2] Nilsson N.J., Principles of Artificial Intelligence, Springer, 1982.

[3] Gregorics T., Fekete I. and Varga L.Zs., Corrections to Graph-Search
Algorithms, Fourth Conference of Program Designers, ELTE, Budapest,
June 1-3, 1988, ed. A.Ivanyi, 25-30.

[4] Gregorics T., Another Introduce to Consistent Algorithms, Proc. First
Seminar on Artificial Intelligence, Visegrdd, January 23-25, 1989, ed.
I.Fekete and S.Nagy, 137-144.

[5] Rich E. and Knigth K., Artificial Intelligence, McGraw-Hill Inc., 1991.

48

T. Asvanyi and T. Gregorics

[6] Pearl J. and Korf R.E., Search Techniques. Ann. Rev. Comput. Scu.,

(2) (1987), 451-467.

T. Asvényi

Dept.of General Comp. Science
Eotvos Lorand University

VIII. Mizeum krt. 6-8.

H-1088 Budapest, Hungary
asvanyi@ludens.elte.hu

T. Gregorics

Dept.of General Comp. Science
Eotvos Lorand University
VIII. Mizeum krt. 6-8.

H-1088 Budapest, Hungary
greti@ludens.elte.hu

