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SPLINE APPROXIMATIONS TO

SOLUTIONS OF INITIAL VALUE PROBLEMS

A. SovegjartS (Budapest, Hungary)

Dedicated to Professor J.Baldzs on his 75th birthday

Abstract. A family of spline methods is investigated for the numerical
solutions of n-th order initial value problems for ordinary differential equa-
tions y(™)(z) = f(z,¥, ey, y(‘)(O) = y(()'), i=0,..,n—1. This
is a modification of the method that was proposed in [18], [19]. The spline
S which approximates the exact solution y is of degree n + k, (k = 1,2,3)
and class C"~!. The convergence of the method is proved. The stability
is discussed for the first and second order linear test equations. Numerical
examples are given. This method can be considered as a modification and
extension of the methods given by Loscalzo and Talbot [13,14], Callender [4],
Micula [15] and Fawzy and Soliman [7]. Furthermore, it can be considered
as a modified Nordsieck method or a slight modification of Taylor expansion
of order n + k. The proposed method has the advantage over the discrete
method that it gives a global approximation of the solution and also permits
the study of the behaviour of the derivatives of the approximate solution.

1. Introduction

A spline method was proposed in {18,19] for the solutions of the initial
value problems of n-th order ordinary differential equations. The leading idea
of the construction was to create approximate solution by splines of order n+ 1
which belongs to the class C™ on the whole integration interval and which
approximates not only the exact solution of the initial value problems but its
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derivatives, too. Now the continuity conditions will be relaxed for the sake
of better stability property. The constructed piecewise polynomial spline is of
degree n+ k (k = 1,2,3) and of class C" 1.

2. Description of the method

2.1. The numerical process

Let us consider the following initial value problem of order n:

(2.1) Y = flzy g Y),

(2.2) )=o), i=0,..,n-1,

where y§,7=0,...,n — | are preassigned values. The smoothness condition for
the function f depends on the degree of the spline: if the approximate spline
is of degree n + k then let f € C*+*(D),k =1,2,3 and D := {(z,y, ...,y* 1)
| 20 < 2 <b}. Let assume that f is a Lipschitz continuous function, i.e.

n-1
(2.3)  1f(z oy bh o 08" = F(2 v, e w T S LY 1Y) =),
j=0

where L is the uniform Lipschitz constant.

It is known ([10], Theorem 4.1), that there exists a unique y(z) solution
of the problem (2.1), (2.2). We construct a polynomial spline function S(z)
of degree n + k (k = 1,2,3), approximating y and its derivatives. For this
purpose let h be the stepsize, h := (b — z9)/N, N € N, and we define in each
subinterval (z;,2i+1],7=0,...,N — 1 the components of S by

(24) piyr(z) = @ (@ —2)" PP 4ol 2 -zt Ll (z—3) 4,

1

where the coefficients a{, i =0,.,.N—-1,7 = 1,...,n+ k are yet to be
determined. For the sake of simplicity we consider equidistant mesh only, but

the method is applicable with variable stepsizes, too.
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From the initial values (2.2) and from (2.1) we get
(2.5) o=y ay=y/il =1 .1,
(2.6) a3+j—l :f(‘j—l_)(l:o‘y:)l.l)‘ygl)‘“.‘ygn.-l))/(”+]-_1)!‘ j= 1,,k+1

I. Case n = 1. For the first order equation let us define the recursion
formulas by

(27) a'i:-i-l :f(j-l)(zi+llpi+2(zi+l))/.j!! J: l:-"uky i:0,...,N'—1,
furthermore el
o+ .
k+1 _ 9 6
4% = T Y ik r e
Tag2
(2.8) x [ [P, pigale)) — Klaby ) de, k=1,2,3,
Ty

i=0,...,N — 2. The last equation is an implicit equation for af_;f'll, the others
are explicit ones. The formulas (2.5) — (2.8) define single-step spline method
for (2.1), (2.2), whenn =1, k=1,2,3.

II. Case n > 2. The starting step of the algorithm is the same as
before (formulas (2.5)-(2.6)). Furthermore, the coefficients a!,j < n can be
determined from the continuity condition S € C"~!, which means

(2.9) p i) =p (), i=1,. N=1, j=0,1,..,n-1
These equalities give recursion formulae for a{ as follows (let m := n+ k)
(a},, = ma>h™" ! + (m - Da* thm=2 4 .. +a}

2a?,, = m(m — 1)al"h™" % + ...+ 2a}

(2.10) . 3lad,, = m(m — 1)(m — 2)a"h™~3 + ... 4 3!a?

(n—1'a?7 =m(m = 1)...(m—n+2)a™hm "+ 4
1+1 1

4 (n=1)la?!
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where i = 0,..., N — 1. The other coefficients from a},, to a;'_‘,_‘ll can be

determined similarly as (2.7) by

(2.11) a7 = f9 i pipa(Zig1)e o Pihe (i) (n 4 )

j=0,. k=1 i=0,.,N-1

These are explicit formulae for the unknowns a:‘:f

Let us compute the last coefficients as follows

n+k a"l+k 6
(2.12) %ir1 = 7y +4(n+k)!h'~’x
Ty42
/ [P D0z, piga(2), Plya(z), . pits V(@) — (n+ k = D)lafH " d,
Ti41

i=0,.,.N=2, k=123
The algorithm now is complete.

It can be proved by the help of contractive mapping theorem, that the
spline constructed above exists and is unique ([18,19], Theorem 1).

Remark 1. It is clear, that this algorithm works for £ > 3, too, but
the calculation of the higher derivatives of function f soon becomes very
complicated. Dahlquist and Bjork in [5] Sec. 12.3. write that the popularity
of the Taylor series method has risen again. If f(z,y) is composed from
elementary functions, it is easy to write subroutines, which recursively compute
the derivatives of f.

As we see later, formulas (2.8), (2.12) give second-order approximation for
the corresponding Taylor coefficient, not only approximation of order one, as
it is in the paper of Loscalzo and Talbot [12,13,14], Micula [15] and Sévegjarté
[18,19]. Furthermore, this modification has a great effect for the stability
property of the method (see §3.).

Remark 2. The integral term in (2.8) and (2.12) need only calculated
numerically if & = 1. The Simpson-formula can be applied. For k = 2,3 the
formulas (2.8), (2.12) can be integrated. Furthermore, the implicit equations
(2.8), (2.12) can be solved by simple iteration or by Newton method. This
causes only small perturbation for the eigenvalues of the matrix of method (see
§3), if we rewrite the above spline method into modified Nordsieck-method.
This has a small effect only on the stability property of the method.
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2.2 Approzimate property and boundedness of the main coefficients

Lemma 1. Let f € C***(D) with bounded partial derivatives and let

max_|fY+2)| = Ny k=1,2,3. then
(x,y)€ED

(k) NUSS I
o 1 nk S @in y(@ie), 8T @) | e g2
(213) a,l+1 (n n k)l = I\kh )

i=0,1,...,N — 1 and the constant K} is independent of h and z;.

Proof. Let k = 1 for the simplicity and n be fixed. We prove by induction
on i. Case i = 0 is trivial on the base of (2.6). Suppose, that the statement

holds for a!*!. From (2.12) considering (2.11) follows

n+41 n+1
ntl Giyr — 9
ai++1 = _—3—1'*
.‘L‘,+'_v
1
+m /[f(l’-Pi+2(,1')x~~)"f(l'i+hpi+2(17i+l)|---)]dz
T4

By the Taylor’s formula and by the assumption we get

n+1 7 . 1" m
ntl o _%it1 ) | Kage  fea) ), o ) o
fir1 =773 +3(n+1)!+ gt (n+1)! *3 3(n+1)! ht 12(n + 1)!

Adding to the r.h.s. £f/(xig1)/(3(n + 1)!) and arranging

Qi+l f’(l‘i+1)<_l n+1 f(zig1) _
L 1) S 3 (n41)!

B f’(xi-{-l) f’(mi) f”(zi-f-l)h' ﬁh2+ ]\/’1 2

n+ 1) 3n+1) 3(n+1) 3 12(n+ 1)1 °
that proves the statement for i+ 1. In the cases k = 2, 3, the functions f’ or f”
appear in the integrand, but similar arguments as above prove the statement.

To prove the boundedness of the main coefficients we need

Lemma 2. (special case of [5],Th.12.3.3.) For the scalar difference
equation

Yig1 = a; + 0, o = |uol,
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the following estimate holds

n_ |
{ £ + a”|ug| if a#l,
v = a—1
|ug| + Bn if a=1.
Ifa <1, then ¥, Smax{|uo|, 7 ﬁa}' n> 0.

Now we are in a position to prove

Lemma 3. Let k =1 and |fz| < M and |fy| < L. (For k = 2,3, tnstead
of f and f, one has to consider fy, f, or i/, fy.) If fyh <3 (or fyh <3 and
f;’h < 3), then there exist universal constants Cy, k =1,2,3 for which

|a§‘++l"| <Cy, i=0,1,...N-1.

Proof. Let k =1, n = 1. Applying the Taylor’s theorem for the function
f and by integration the formula (2.12) gives

n+l _ apt! +§ f=(&,n) + f,,({,n)a?:llh + fy (€, maiy,

Ger T T T 2 3 2 -
and so
v n+1 a’?+l 3 n
(214) ot = ThEh + 2[4_fy(f‘n)h][fx(&n)+fy(6.n)a.~+1]~

From (2.7) follows that a?(i = 1,2,...) are bounded if f is bounded function
on the region of D. Denote A the bound of af-s, and let By := 1.5[M + LA],
independent of <. If fyh < 3 in D then a := 1/(4 - fyh) < 1. From (2.14) also
follows immediately by Lemma 2, that

|’1-—a

B
lant] < max{]a}]l+l : } =:C).

If £ = 2,3, then instead of f we have to deal with functions f’ or f”. In this
cases M and L denote the bound of |f;| and |fy] or |f| and |f/|.

For the higher order equations the proofs are similar, therefore we omit.

Remark 3. From Lemma 1 and Lemma 3 can be easily derived that the
other coeflicients of the spline remain bounded, too. So it follows that the
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spline approximation is contained in a bounded domain of D, whenever the
exact solution of the problem (2.1), (2.2) is bounded.

2.3. Local truncation error

In the method (2.4) the local truncation error d;4; is the measure of the
accuracy when: 1) the numerical solution is replaced by the exact solution
which goes through the point (z;, y(z;)), and 2) we take the difference of both
sides of (2.4).

Theorem. Lel f € C'*+2) in (2.1). Then the local truncation error for
the spline method given in Section 2.1 has the form

dH-l = Ch"+k+1 + 0(hn+k+2),

where the constant C s independent of z;.

Proof. We proceed the proof when n = k£ = 1. For the other cases the
proofs are similar. The local truncation error now is

dit1 = Y(2ig1) — y(2i) — ath — a}(y)R?,

where
2 g U
al = flaiylzi), ad(y) = ==L+ 4—23 / [f(z,y(z)) = f(zi, y(zi))ldz.

Applying the Taylor formula for y(z;41) we get
! Ti, Y\ Ty
di+l - h? { [f( 2y( )) _ a?] +
Leg

+ |al _;__% /[f(z,y(x))—f(l‘i.y(l'i))]d‘”

£y

+ f”(£,6y(£)) h3 -

=h* {1+ L} +

j”(éx()y(f)) h_3' £ € (17.‘,1';’-}-1)-

On the base of Lemma 1 and formula (2.13) follows

Illl < 1\’1’12.
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Considering (2.8) and the Lipschitz continuity of f we get
gl L1
3 . 3L
12l < |z [ (zpii(2) = Sz, y(@)lde| < 5 [ [pis(2) — y(2)ldz.
Applying (2.4) and the Taylor formula once more, by Lemma 1 holds

|I] < 1\o§—L-h2 + K 34Lh

where Ky := me)n |f”|. Finally we get
(x

Id,+1| < ]—\62/73 + (1\0% + ]i'l) h? + 1\’1-3149-’15,

which proves our statement.
2.4. Convergence of the method

Maiu theorem. If f € C***(D), ifh = 2/N and if the sequence piy1,i =
0,1,. — 1 is defined by (2.4), and if py — y(0), then pn(z) — y(z) as
N — oo umformly in » with the order n+ k. Here y(z) is the solution of (2.1)
with witial value y(0).

Proof. For the sake of simplicity we deal with the first order differential
equation n = 1. By the definition of the spline, if k£ =1 let

(2.16) P(Tit1) = pi + bih + a;h?,

where the coefficients a;,b; are defined by formulae (2.7) and (2.8). On the
basis of the Taylor’s theorem

f1(@i,4(z4)) (’““y(“‘))h + Koh3,

(2.17) Y(@iv1) = ylxi) + ¥ (zi)h + 2

Ko :=( me)n(D |f"(z,y)|. Here the constant A’y independent of h and z; and it
€

depends only on the upper bound of the second order partial derivatives of the
function f. Subtracting (2.17) from (2.16), we get

I . .
218)  ernal < leal+ by = /)l [y - LEEED 2y oo
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By the Lipschitz continuity
6i = fleiy(@i))] = [f(ai, pila:) = flai,y(@i)] < Llpi(2i) = y(2:)| = Lle|
and by Lemma 1 we get from (2.18) that
lecer] < (14 Lh)les| + KA,

The ¢onstant K is independent of 2 and h. Let o := 1+ Lk, 8 := Kh® and
applying Lemma 2, follows

Kh3

len] < ——[e"* — 1]+ e"*leol.

Lh
This proves the convergence of the spline method and shows that the order of
the method is two. For the case k = 2,3 the proof is similar, only we have to
consider the Lipschitz continuity of the derivatives of function f.

Remark 4. For first-order differential equation (n = 1), the spline method
is of order 2,3,4, for second-order equation is of order 3,4,5 respectively,
whenewer k£ = 1,2,3. These results generalize the results of Loscalzo and
Talbot [12-14], Micula [15], Fawzy and Soliman [7] for the first, second and
n-th order differential equations respectively.

2.5. The spline method as modified Nordsieck method

Let introduce the following so-called ” Nordsieck vector” [9, p.360].
(2.19) 5= (yi hal h%a}, . R R T

The al are meant to be approximations to y\/)(z;)/j! (see [12,13]), where y(z)
is the exact solution of the differential equation (2.1). In order to define
the integration procedure by the spline method we have to give the rule for
determining z;4; when z; and the differential equation (2.1) are given. For
n > 2,k = 1 such a rule is, considering (2.4), (2.10)-(2.12)
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Vi1 = ¥ + hal + B2 + 4 AT

ha!,; = ha! + 2h%a? + ...+ nh"a? + (n + 1)h"+1al+!,

1

h%a?,, = h%a} +3h3%a} + ..+ —-——”("2—“/1"(:.;‘ + -(——-"J'zl B pntlgntl

(2.20)
/l"_ltl.;'_*__ll — h"_'la.?—l +nh"a® + LQ(‘*'TI_)_%!‘._:*hn+la?+l’

7 . -1
hhalyy = h™ f(2ip1, Pipa(Tig1), oo Pypo N(@ig2))/n,

h"'“a:"“ + ghnt! %
4 4(n+1)'h?

7 1 1 _
h'+1(zi':1 =
Li42
-1
X f [f(-‘l:api+2(z),P£+2(x):~-yP$:2 )(:c))—n!a?H] dz.

\ Zit1

The last equation constitutes an implicit formula for a,'-'fll, the remaining ones

are explicit. If we put f(2,y,...,y'"~") = 0 in (2.20), the method becomes the
linear transformation

(2.21) Zi+l = MZ,‘,
where
M 1 1 1 1 1 ]
1 2 3 n n+1
n(n—1) nn+1)
= 1 3
M 2 2
oy
I 0 i

When the function f does not vanish, then (2.20) can be written in the
form

(222) Zig1 = Mz; + 1‘,'(2.‘+1),

where r,T = (0,...,7i n+1, i n+2), and here the last two components of the vector
are as follows

~1 .
Pima1 = W f(@igr, Piga(Zivt)s o Pirg (ie1))/n),
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Li42
6 , - )
FTERSI [fl2,piga(@), ., Pies (2)) = nlaly,] de.

Lyt

Pinga = A"

This form of the method is more convenient for the stability considerations.

3. Linear stability analysis

3.1. First-order linear test equation

The stability of the method is discussed for the next first-order linear test
differential equation

(3.1) ¥y ==y, A>0.

In case of linear equation the method is in the matrix form (2.21). If £ = 1,
the matrix of the spline method for equation (3.1) is as follows:

M=
3H? 3H*® 3H?+2
8+2H 8+2H 8+2H

where H := Ah. For the stability of the method the eigenvalues of M must lie
inside the unit circle in the complex plane.

Cases k=1, 2, 3. If we apply second, third and fourth order spline,
the method is stable whenever H < 6, 2.65 and 3.2. Let H = 0, then the
eigenvalues are {0,1/4,1}, {0.0,1/4,1} and {0,0,0,1/4,1} respectively.

It is proved in [13-14] that the spline method of Loscalzo and Talbot for
the first order equation is divergent, whenever the degree of the spline is greater
than three.

Remark 5. (On the stability property of the method, given in [18,19].)
In case of first order equation (3.1) the eigenvalues of the second order spline
method are 0 and (-2H % (3H? + 9)/%)/(3 + H). Hence we applied the
modification 8a’t! + (1 — 0)a’*',0 < § < 1, where 0 is a free parameter

which can be optimized. The method is stable if 1/2 < 8 < 8/9, for sufficiently
small h. If § = 8/9. the method is stable for Ah < 2. The eigenvalues of
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M are in this case 1 and *1/3, if h — 0. If § = 1/2, the method is stable
for Ab < 1. The eigenvalues now are 1 and (1/4) + (v/15/4)i if h — 0. For
6 = 8/9 the numerical results are better with order one in magnitude than for
the parameter § = 1/2.

3.2, Second-order linear tesl equation

Consider the linear second-order differential equation
(3.2) ' ==y, A>0.

Dahlquist [6] proved that if the linear multistep methods for solution of the
equation y" = f(x,y) are applied, the order of accuracy cannot exceed two
for an unconditionally stable method. Our one-step method is conditionally
stable.

Cases k=1, 2, 3. Similar analysis shows as before that for the splines
of degree three, four and five, the method is stable if A>A? < 0.1, 1.3 and
4.0. Let Ah = 0, then the eigenvalues are {0,1/4,1,1}, {0,0,1/4,1,1} and
{0,0,0,1/4,1, 1} respectively.

We have calculated the eigenvalues of the matrix M with the help of the
software-package Mathematica.

Micula [15] extended the method of Loscalzo and Talbot for the second-
order differential equations, but the derivatives on the right-hand side are
absent. He proves that the method is divergent if the degree of spline is greater
than four.

Thus we must stress that the method presented here works in the cases
when the method of Loscalzo and Talbot and its extension by Micula does not
work.

Remark 6. The stability criteria of the method given in [18,19] for the
second order equation (3.2) is A2h? < 2.4. The degree of the spline is three in
this case.
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A 1 10 50 100 1000
h =10""']| abs | rel [abs | rel |abs [ rel | abs | rel | abs rel
Y 3.7-7 [1.1-6 |8.6-3 [9.6-1 | - - - - - -
3/ ”» ” ”_9 ” _ _ . _ _ _
! ” ” ”» _1 ” - _ - - - _
yyllll ”» ” » +0 » _ - - - _ -
yUV) 12.0-3 {1.9-3 [8.7+2(2.41 | - - - - - -
bh =107
y 3.1-11 8.6-11]3.7-7 |1.0-5 | 3.9-4 |8.1-2 {8.9-3 [1.8+3| - -
!/ » ” ” _6 ”» 19_2 ” » _1 » - -
yl ”» ” ” -5 ”» 97_1 ” ” +1 ” _ .
!/II ”» ”» ” _4 » '48+1 » ”» +3 » - -
yIY)  [2.4-5 [1.9-5 [2.0+1]1.9-3 [2.045]5.3-2 |9.3+6 R.T+1| - -
=10"3
Yy 3.1-15 8.4-15 3.1-11 8.5-10 | 2.1-8 |2.9-6 {3.7-7 |1.0-4 | 8.9-3 [5.6+32
!/ » ” ” -10 ” 1.1-6 ” ”» _5 » ” +0 ”
!/l » ” ” _9 ” 53_5 ” ”» _3 ” » +3 ”»
:,/II ” » ” -8 ”» 2.6-3 ”» » ] ” ” +6 ”»

yIV) 12.5-7 (1.9-7 |2.4-1 [1.9-5 [3.44+3 |4.7-4 [2.045(1.9-3 [9.3+108.5+30
h — 104
v 1.9-175.1-17 3.1-15 B.3-14[1.9-12 2.6-10 [3.1-11 [8.5-9 | 3.7-7 | 1.0-3

yl ” ” ” -14 ” 97_11 ”» ” -9 ” ”» -4 ”
yJI ”» ” ”» -13 ” 49_9 ” » -7 ” » -1 »
yHI ” ” » 1.2 ” 24_7 ” ” _5 ”» ” +2 ”

yIV)  12.5-9 {1.9-9 |2.5-3 [1.9-7 |3.8+1[4.7-6 [2.4+3 [1.9-5 |2.04+9 | 1.9-3

Table 1.

Mazimum absolute and relative errors of approzimate solution and its
derivatives. (We apply the notation 3.7 — 7 for 3.7 x 10~7.)

4. Numerical results

Numerical results have been compared with the exact results and results
obtained by other methods. It can be observed that the spline method compares
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with other methods and can be effectively applied for the solution of nonstiff
or moderately stiff problems. '

Examples was performed on an IBM 486 compatible computer with
program language PASCAL and with extended variables.

Example 1. (Henrici [10], pp.240-241.) (see Table 1.)

¥y ==Xy, 0<z<1, y0)=1, X=1,10,30,50,100,1000.

y(z) = exp(—Az). The problem was solved with fourth

The exact solution is:
order splines.

The problem was solved on the interval z € [0,100], too. The absolute
errors in y(z) and its derivatives at the end point of the interval (at z = 100),
if A\=10% and h = 1073, are

y:1.1—-4345, ¢ :1.1-4343, ¢":1.1-4341,
y" :1.1-4339, V). 1.3-4337.

The relative errors at the end of the interval are all 1.0 — 2, except the last
derivative (y(/V)), for which the relative error is 1.3 —4. The maxiumum errors
are the same as in the Table 1.

Example 2. (G. Dahlquist, A. Bjork [5], Example 12.7.1.)

y =100(sinz —y), y(0)=0. 0<=z<3.
The exact solution is
1 , cos(z)  exp(—100z)
¥(®) = 7001 |M"®) ~ oo 100

The absolute errors of the classical fourth order Runge-Kutta and the third
order spline method with different stepsizes

h 0.015 0.020 | 0.025 0.030 0.040 0.050
RK4: 8.0-7 8.8-6 6.2-5 6.7+11 - -
SP3: 7.9-6 1.6-5 2.9-5 4.8-5 1.3-4 4.6-2

Table 2.
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From the results can be seen that the Runge-Kutta method for A = 0.03
has a frightful numerical instability, while the spline method gives an excellent
result.

Example 3. (G.A. Baker, V.A. Dougalis and S.M. Serbin [2], Problem
L)

y" = —,\Qy, 0<z2<b, y0)=1, yl(O) =0, A= 100, 1000.

The exact solution is: y(z) = cos Az. To solve this problem, we applied the
fifth-order spline (k = 3), with the stepsizes h = 10-2,10-3,10~4.

A2=100 22=1000
h 0.01 0.001 0.01 0.001 0.0001
b=1 | abs | rel abs | rel | abs | rel abs | rel abs | rel
v 3.4-6 {1.6-4 [3.3-10(8.3-8(1.3-3 |8.0-3 [1.2-7 {3.3-5 |1.2-119.7-8
v 4.2-5 |1.5-4 [4.0-9 {8.2-8(4.3-2 |9.1-3 |4.2-6 |3.3-5 [4.2-10(2.9-8
vy’ 3.4-4 {1.6-4 [3.3-8 |8.3-8/1.34+0/8.0-3 }1.2-4 {3.3-5 | 1.2-8 [9.7-8
y" |4.2-3 [1.5-4 |4.0-7 [8.2-84.3+1(9.1-3 |4.2-3 [3.3-5 |4.2-7 [2.9-8

yIV) [3.4-2 [1.6-4 [3.3-6 [8.3-81.34+3(8.0-3 [1.2-1 {3.3-5 [1.2-5 [9.7-8
yV) 12.542(7.2-3 [2.540(1.0-4[7.84+5|1.5-1 {7.94+3(3.5-3 [7.9+1 [1.2-5
b=10
y  |4.1-5 [1.0-2 [4.1-9 [2.5-5[1.3-2 [6.5+0[1.3-6 [1.4-2 [1.3-10[1.4-4
v  |4.1-4 [1.7-2 [4.1-8 |1.8-5|4.1-1 [2.140[4.1-5 |2.0-3 |4.1-9 [1.4-4
v’ [4.1-3 [1.0-2 [4.1-7 [2.5-5[1.341(6.54+01.3-3 |1.4-2 |1.3-7 [1.4-4
y"”  14.1-2 [1.7-2 |4.1-6 {1.8-54.14+2[2.140|4.1-2 |2.0-3 |4.1-6 |1.4-4
yIV) 14.1-1 {1.0-2 [4.1-5 [2.5-5|1.34+4(6.54+01.3+0|1.4-2 |1.3-4 [1.4-4
g 2.542(1.2-1 [2.5401(6.2-4[1.0461.140 [7.94+3|1.6-2 {7.941 |4.6-3
b=100
y |4.2-4 4.840[4.2-8 [8.9-4{1.3-1 [7.6+2]1.3-5 [1.44+0]1.3-9 [1.4-4
Yy |4.2-3 4.840(4.2-7 [2.1-34.040[2.142[4.2-4 |1.440]4.2-8 [1.4-4
y’'  |4.2-2 4.840(4.2-6 [8.9-41.34+2(7.6+2|1.3-2 [1.4+0]1.3-6 |1.4-4
Yy 14.2-1 4.840(4.2-5 [2.1-34.04+-3[2.1+24.2-1 |1.4404.2-5 |1.4-4
yIV) 14.240 4.840(4.2-4 8.9-41.3+5(7.6+2 [1.3+1|1.4+01.3-3 [1.4-4
y V) 12.64+2[2.840[2.5+0(5.3-3 [4.3462.0+2[7.9+3 [8.8-1 [7.9+1 14.6-3

Table 3.

Mazimum absolute and relative errors of approzimate solulion and its
derivatives
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In [2], it is proposed a class of approximation schemes for linear second-
order evolution equations, which are effected via a specially constructed family
of rational approximations to cos 7 for 7 > (). Their result for this problem with
different observed order of accuracy at b = 10 and for A2 = 100 is as follows

h =0.01 abs.error: 3.35 — 4, the order of accuracy:3.97
h = 0.02 abs.error: 2.76 — 4, the order of accuracy:5.82.

Our results are: if h = 0.01, then 4.1 — 5 and if A = 0.02 then 6.6 — 4. Here we
applied fifth-order spline. The absolute error with eighth-order of accuracy in
(2] is 2.84 — 8 if h = 0.02, and A% = 100.

Example 4. (R.K. Jain, R. Goel [11], Problem 1.)

1"

y' =Xy, 0<z<l, y0)=0, A=1,10,30,50,100.

The exact solution is:  y(z) = (1 —e~*%)/A\.

The absolute errors of the fourth order method of Jain and Goel and the
spline method of order four and five with different A:

A 1 10 30 50 100
JG4: y - 4.89-7 1.38-5 6.32-5 -
JG4: - 4.89-6 4.15-4 3.12-3 -
SP4: y 1.1-8 4.8-6 5.5-5 1.8-4 1.1-3
SP4: ¢/ 1.6-8 1.8-5 6.5-4 3.6-3 4.3-2
SP5: y 2.3-11 | 9.8-8 3.4-6 1.9-5 2.2-4
SP5: y 3.1-11 | 3.7-7 4.1-5 3.8-4 8.6-3
Table 4.

The stepsize for the JG4 method is A = 1/32 and for the SP4, SP5 methods
is h = 0.01.

Conclusions. We presented a family of spline methods for the initial
value problems of ordinary differential equations of order n. The order of the
method depends on the degree of spline to be applied. The method gives
global approximation on the whole integration interval, and approximates not
only the exact solution but some of its derivatives, too. This algorithm works
in the cases when the method of Loscalzo and Talbot and its extension by
Micula does not work. It is effectively applicable for the solutions of nonstiff or
moderately stiff problems. Burrage [3] writes the following: "In reality, linear
multistep and Runge-Kutla methods are just two small islands in a vast and
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unezplored sea of numerical methods. Before efficient methods can be found,
this sea has to be charted...”. We think, the spline methods represent another
island on this chart.
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