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REMARKS ON VILENKIN BASES

P. Simon (Budapest, Hungary)

Dedicated to Prof. Jinos Baldzs on his 75th birthday

Abstract. The aim of this paper is to summarize the results about the
Vilenkin system from the aspect of the bases. We shall investigate the most
important function spaces. The first three sections have general characters:
they contain a short suminary of the results playing a basic role in the
theory of the bases.

The concept of the basis

In this section we recall the concept of the basis and give a short summary
of general observations with respect to the bases. (For more details see e.g. [7],
[13])

To this end let X' be a (real or complex) linear space endowed with a
norm ||.|| . For example, we consider the well known L?[0,1] or ¢, spaces
with the usual norm ||.||, for 1 < p < 400 . The space X is said to be
separable if there exists a subset Y C X which is dense in X and is at most
countable. It is easy to see that the spaces LP[0,1], £, are separable for all
1 < p < 4o but this is false for p = 400 .

If X isseparable and Y is a subset of X mentioned above, then the
linear hull of Y is obviously dense in X. We get by an elementary argument
that this is reversible, i.e. the space X is separable iff there exists a system
of elements z, € X (n € N :={0,1,...}) such that the subspace spanned by
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the ,’sis dense in X. In this case the system (z,,n € N) is called closed
in X. For example, if X denotes the space C[0,1] (i.e. the linear space
of continuous real functions defined on the interval [0,1] with the maximum-
norm), then the power functions form a closed system in X (in view of the
well known theorem of Weierstrass), i.e. X is separable.

Let X be a separable Hilbert space with a scalar product <,>. If
(zn,n € N) is a linearly independent closed system in X, then by the
Schmidt’s ortogonalization procedure the orthonormality of (z,,n € N) can
be assumed, i.e. that < z,, 2y >=0if k #nand < z,,z, >=1 (nké€
€ N) . In this case a simple argument shows that for any = € X there exists
a unique representation

r =

Me

< I, T > Tk

k=0

(the Fourier ezpansion of = with respect to the system (z,,n € N) ).

An analogous representation can exist also in other cases, i.e. if the space
X isnot necessarily an euclidean space. This observation leads to the definition
of the basis. Hence, a system of elements (z,,n € N) of the normed linear
space X 1is called a (Schauder) basis if for any = € X there exists a unique
sequence (ayi,k € N) of coefficients such that

(1) z = ZQ,,J:L..
k=0

(This is a direct generalization of the elementary concept of coordinate system
in finite dimensional spaces. From now on we will assume that X is not of
finite dimension.)

It follows evidently from the definition that every space having basis is
separable. The well known basis-problem due to S. Banach, i.e. the question
whether every separable Banach space has a basis or not, had been open for a
long time and answered in negative sense by P. Enflo [1] in 1973.

For example, if 1 < p < 400, then the ”"coordinate sequences” (8nx,k €
€ N) (n € N, 6, stands for the Kronecker symbol) form a trivial basis in £, .
Furthermore, a closed orthonormal system in a Hilbert space is a basis.

By (1) we introduce the following notations: for 2 € X let Zp(z) :=
n-1

:=ar (k€ N) and Sy(z) := Y arzr (n € N). As a simple consequence
k=0

of the Banach theorem on the inverse function and of the Banach-Steinhaus
theorem we obtain that the coordinate functionals z, (k € N) are bounded
(linear) mappings, furthermore, the partial sum operators S, (n € N) are
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uniformly bounded. It is clear that zi(z;) = 6x; (k,7 € N), i.e. the systems
(2x,k € N) and (24, k € N) are biorthogonal.

To the characterization of the bases we need the concept of minimality of
a system. This means that each element of the system in question is out of
the closed subspace spanned by the rest elements of the system. By the Hahn-
Banach theorem it can be proved that a system (z,,n € N) in X is minimal
iff there is a sequence of bounded linear functionals on X biorthogonal to
(zn,m € N). If (2,.n € N) is closed, then this system of functionals is
unique.

Now, the characterization theorem says that a system (z,,n € N) of
elements of X is a basis in X if and only if the following conditions hold:

1) (zn,n € N) is closed and minimal
and

1) if (¢n,n € N) is the sequence of functionals biorthogonal to (z,,n €
€ N), then the operators

Zsok(l')l'k (€ X, neN)
k=0

are uniformly bounded linear operators.

It is not hard to see that this is equivalent to the following statement: if
(zn.,m € N) is closed in X, then it is a basis in X 1ff there is a constant
B > 0 such that for every finite linear combination 3 axz); and for every

n oc
E ALy E QpZ
k=0 k=0

<B

holds.
Bases in function spaces

In the rest of the paper we are mainly interested in the cases X := LP :=
= LP[0,1] (1 <p<+4o0)and X :=C[0,1]. If ® = (pn,n € N) is a system in
LP having a biorthogonal system ¥ = (¢, n € N), then by the representation
theorem of F. Riesz it can be assumed that ¢, € LY (n € N) where 1/p+

_ 1
+1/¢ = L. Furthermore, if f € L? and f(n) := [ fn (n € N), then
0
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o
the so-called biorthogonal series associated with f is 3 f(n)y,. Denote by
=0

Sn (n € N) the partial sum operators of such expansions, i.e. let
n-1 3
Salf) =) flklpr (nEN, feLP).

k=0

If @ is closed and minimal in L?, then from the above characterization
theorem it follows that @ forms a basis in L? if and only if

sup{|)Sr]| : n € N} < +00.

Let n€ N, f € LP and write S,(f) in the following form:

1
Sn(f)(x):/f(t)[s‘.’n(;r,t)dt @el01]).
0

Here K, denotes the so-called (n-th) kernel function of the system @, i.e.
n-—1
Kn(z.t) =Y @r(z)ye(t) (2.t€(0,1]).

k=0

A simple calculation shows that if
1 1
KP() = / IKn(y. Oldy . K{(2) = / |Kn(2,2)ldz (L, z € [0,1})
0 0

and [|Knlli1,00) 1= K8 llow < 400, [[Knllioo1) = [IK5||oo < 400 , then
L. 1,,.
1Sall < lKallgco) + Zalleos) (1< p < +00)

and
”Sn“ < “Kn”(l,oo) (p=1).

These estimates have the following consequences: if 1 < p < 400 and @ is
closed and minimal in L* | then

sup{||Knll(1,00) » 1Knll(cc,1y: n €N} <400 (p>1),
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resp.
sup{||Nnll(10o, n€N}<+x (p=1)

implies that @ is a basisin L* (p > 1), resp. in L!. Similarly, in the case
p = +oc — assuming that & has a biorthogonal system in L' - we get that if

sup{|[Anll(s,1) : n € N} < 400

then @ is a basis in the closed subspace of L* spanned by ¢. Furthermore,
if 1< p<+oo and & forms a basis in L?, then its biorthogonal system is a
basis in LY.

Orthonormal bases

Now, let (X,||.||) be a Banach space such that X C L! and ||f|| < ||f]x
(f € X) . Furthermore, let ¢ be an orthonormal system in X thatis fe, €

€ L! and flspnsok = b, hold for any f € X and n,k € N. It is easy to see
that & is nﬂinimal and the biorthogonal series of an f € X is the usual Fourter
series of f with respect to ®. Hence, f(k) = flfsoic (the k -th Fourier
coefficient, k € N) and ||Kp||ico.1) = IKnll(1,00) =0 [[Lnllee (n € N), where

n-—1

1 1
Ly(z):= /|l\',1(;1:,t)|dt =/
0 U

dt (z€[0,1])

Y or(x)ex(t)
k=0

is the so-called (n-th) Lebesgue-function of &. We shall investigate the
following special cases:

i) X = €10, 1] 11 = oo 5
i) X = 22(0,1], 1= |1, (1S p < +00).

(In the last case it follows from the assumptions that ¢, € LP(\L! (n €
€ N,1/p+ 1/¢ = 1.) Our general theorems imply the following statements:

i) if @ isclosed in L? (1 < p < +o0) and sup{||Ln|lc : 7 € N} <
< 400 ,then ® isabasisin L? and for p# 1 in L9, too;

i) (principle of duality) if 1 < p < +oo and ¢ is abasis in L7, then it
isabasisin L" forevery r satisfying min {p,q} <r < max {p,q} .
(We recall that 1/p+1/¢=1.)
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In the cases p =1 or X = ('[0.1] an easy calculation shows that
1Sall = lLn]lee (1 € N) which implies

i) if @ is closed in L' (resp. C[0,1]) ., then sup{||Ln|lec : mn € N} <
< 400 Is necessary and sufficient to conclude that & is a basis in
L (resp. C[0,1]) .

The crucial part of the above statements is the uniform boundedness of
the operators S, (n € N) (implied by the condition sup{||La]lec : 7 € N} <
< 400 ) which can be investigated by means of the well known interpolation
theorems ([21]). Indeed, if @ is an orthonormal system in L% and forms
a basis in L2, then by the Marcinkiewicz theorem (and by the principle of
duality) the uniform weak type (1,1) of S,,’s implies the uniform boundedness
of the operators S, : L¥ — L? ie. that & is a basis in all of the spaces
LP (1 < p < 400). (We recall that the uniform weak type (1,1) of Sp’s
means the existence of a constant M > 0 for which

mes{z € 0.1 15,/ > ) < ALl

holds forall fe L' , ne€N and y>0.)
The Vilenkin system

We will investigate the above questions with respect to the so-called
Vilenkin system, i.e. our goal is to give a sununary of results characterizing
the Vilenkin system as basis in some function spaces. To this end we introduce
some definitions and notations in this connection ([18]).

Let m = (mg,my,...,mp,...) be a sequence of natural numbers, m; >
>2 (k € N) and denote Z,,, the my -th discrete cyclic group represented
by the set {0,1,...,m; — 1} (k € N). If we define G,, as the complete direct
product of Z,,,’s, then G,, is a compact Abelian group with Haar measure
1. The elements of G,, are of the form (z¢,z1,...,zk,...) (2k € Zm,, k € N)
and the topology of G, is completely determined by the sets

In = {(x0,21,....24,..) €EGp, 1 2;=0 (j=0,..n=1)} (n€eN)

({o := G ). Let us denote the cosets of I,’s by I.(z) = z+ 1, (z €
€Gmnm,neN).
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It is well known that the characters of G, form a complete orthonormal
system in L'(Gn) (the so-called Vilenkin system ([18])). The elements of the
Vilenkin system can be obtained as follows. Define the sequence (Mg, k € N)
as My :=0 and Mgy := mpM; (k € N). Then any n € N has a unique
representation of the following form

n= anMk (ng =0,....m =1, k€N).
k=0
If

2mwix,

ra(z) := exp (ne€ N, z=(20,21,..) €EGCp, i =-1),

n

then the elements of our system are exactly the functions

[ee]

v =[] rf* (n€N).

k=0

We note that the group G,, can be transformed in the interval [0, 1] ‘by
means of the following mapping

[0 ¢]
G d2— I e[0.1].
" ]X_;MJ‘H

It is easy to see that this correspondence is almost one-to-one and measure-
preserving.

In this case the kernels of Dirichlet type are of the form
Kp(z,1)=Dy(z—-1t) (2,t€Gm, n€N)

n-1

where D, := 3 4. In other words, the Lebesgue functions are constants for
k=0

all n € N (the so-called Lebesgue constants of the system). Moreover, it is

true ([18]) that
[1Dnlly = [ILullec = O(logn) (n+—o0), [|[Dm,|li=1 (n€N)
and

limsup % >0.

n— 00
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The first part of this statement can be improved ([4]), namely the estimation
||max{|Dy| : £=0,....,n}|)i = O(logn) (n~ o0)

is also true. Although the Vilenkin system is closed in C(G,,) (:= the set of
the continuous complex valued functions defined on G,;) and consequently
also in L!(Gy,), it follows from the above general theorems that our system
does not form a basis in these spaces. In this connection we recall a non-
trivial result of the orthogonal series which says that a uniformly bounded
orthonormal system (defined e.g. on [0,1]) cannot be a basis in the spaces
L'[0,1] and C[0,1] ([8)).

Function spaces

The space C(Gm)

Since sup{||Du|ly : n € N} = +oc, it follows by a standard argument
({18]) that for every « € G,, there is a function in C(Gn) such that
its Vilenkin-Fourier series diverges at «. Moreover, the partial sums of this
function are not bounded.

An excellent classical result in the theory of the trigonometric Fourier
series (due to L. Fejér [2]) is the construction of a function having divergent
Fourier series at a prescribed point. This construction is based on the so-called
Fejér polynomaials the analogue of which for the Vilenkin system we will just
give.

Namely, let 6, := ['—n-h_rl] (the integer part of m‘L{—l, k € N)

n
and N, := 6 My (n € N). For the sake of simplicity we will assume that
k=0
my > 2forall £ €. (If mp =2 forsome k € N, then the next construction
can be easily modified.) Let us introduce the following Vilenkin polynomials:

Ok g S —j n
N o Sl S -y L, .
hy = ,2:'; ; . Pai=yn, Z_:O " h;Dpy, (k,n € N).
Then the P,’s have the following basic properties of Fejér type ([14]):
i) sup{||Palleo : m € N} < 400
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i) there is a constant C' > 0 such that

ISn, (Pa)(0)] > C-log N, (n €N).

We note that by the general inequality ||Sn(f)|loo < C1-||fllo-log n (0 <
< n €N, f € C(Gp), for some constant C; depending only on m) the
estimation ii) cannot be improved.

By the help of P,’s we can construct examples for functions in C(Gm)

having divergent Vilenkin-Fourier series. To this end let the sequences ap >
o0

>0, 2 € Gymynk €N (g < nypy1,k €N) be givenand Y ap < 400 . It
k=0

is clear that the function defined by

f@) = curn41(2) Pz +25) (2 € Gm)

k=0

belongs to C(Gr,) and

SMay 41 4Na (F)@) = St +1()(2) = arru41(2)SN,, (Pa,)(z + 2)

(2 € G . kEN).
From these observations (by means of suitable choice of the parameters) we
can deduce the following statement ([14]):
there is a function f € C(G,,) and a set A C G,,, such that
1) sup{||Sulleo : n € N} < 400 ;
ii) the Vilenkin-Fourier series of f diverges at the points of A ;

iii) for all n € N and y € Gy, the cardinality of the sets A[)I.(y) is

continuum.

Furthermore, on the growth of the partial sums of functions belonging to
C(G,) we can say the following:

if A, = o(logn) — +oc (n — o), then there exists a function f €
€ C(G,n) such that
1Sn (£)(0)]

limsup ———— > 0.
n=— oo AH

This means that the general estimation S,(g) = o(logn) (n+— o0, g €
€ C(G,)) cannot be strengthened.
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These statements in the Walsh case (1.e. if my =2 for all £k € N) are
due to F. Schipp [11].

The space LP(G,,)

Now, let us examine the spaces LP(G,,) (1 < p < +00). Firstlet p=1.
We know that our system does not form a basis in L!(G,,), i.e. there is a
function in L!(G,,) the Vilenkin-Fourier series of which diverges in L' -norm.
It is quite easy to construct such a function. Indeed, since limsup ggnl >0,

nr—00
there exist a constant C' > 0 and a sequence (ng,k € N) of indices such that
|Dn,|li > C-k3 forall k€ N. If vy € N (k€ N) denotes the index for
which
M, <ng< M, 4+

holds (we can assume that the sequence (vi,n € N) strictly increases), we
consider the function

=1 .
f=> 77 (DMopss = Dav,, ) € LYGm) .
k=1

Then ‘
. A
Ilb,u(f)lllZ(wk—S'ZFh%o (k = 00) .

j=1

This means that the Vilenkin-Fourier series of f cannot be convergent in
L' -norm.

In the case p > 1 the situation is more complicated. Our main theorem
is the uniform boundedness of the partial sum operators S, : LP(Gp) —
— LP(Gm) (n € N), i.e. that there exists a constant C, (depending only on
p,m ) such that

1Sn(Hlp < Co- 1If1lp

holds for all f € LP(G,,) and n € N. (In this case we say that the sequence
(Sn,n € N) is (uniformly) of type (p,p).) This statement for the Walsh (-
Paley) system was proved by R.E.A.C. Paley [10], showing the so-called Paley
inequality, from which the uniform (LP, L?) -boundedness of S,’s follows. His
method can also be applied if

sup{mi : k € N} < +o0
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(Ch. Watari [19]). This is not valid for unbounded m, since in this case
the generalized Paley inequality fails to be true ([19]). We note that for the
Walsh-Paley system Ch. Watari [20] showed also the uniform weak type (1,1)
for S,’s. His method was generalized for bounded m by J. Gosselin [6].
Unfortunately, the assumption on the boundedness of m cannot be omitted
in these proofs. This means that in the "unbounded” case we need a new idea
for the investigatious.

It is well known ([22]) that the so-called conjugate function plays an
important role in the theory of trigonometric Fourier series. For instance the
analogue of our main theorem for the trigonometric system can be showed
by applying the conjugate function. Indeed, the (trigonometric) partial sum
operators on the set of the trigonometric polynomials are compositions of
conjugations and translations and since these operators are bounded from L?
to LP (1 < p < +o0) (A. Zygmund [22]) the same statement follows for
the partial sums, too. In the sequel we give a short summary of the analogous
argument for the Vilenkin system.

To this end let us extend the definition of 6é;’s also for m, = 2, i.e. we
write in this case 8; = 1. Furthermore, let

bk my—1
LL.::-—E1"L+ Z . (k€eN)
j=1 =41

and D, := Li.Dpr,  (n € N). By the help of these conjugate kernels let

n
k=0
us introduce the following sequence of operators
Tn(f):=f*Dn (MEN, fEL(Gn)).
(Here the sy;llbol * denotes the usual convolution operator, i.e. for g,h €
e LI(GTII)
(g * h)(z):= / g)h(z —t)dt (z€Gm).)
Gm

The first theorem is the basic statement in this connection which means that
the operators T, (n € N) are uniformly of weak type (1,1) ([15],[16]).
From this it follows evidently that the sequence (T,,(f), n € N) converges in
measure for all f € LY(G,,) . Let

T(f) :=limmes T,,(f)
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(the conjugate function of f). Since T is of weak type (1,1) and of type
(2,2) we get by interpolation that T is of type (p,p) forall 1 <p< 400 .
We note that T is also of exponential type, i.e.

mes{z € Gy, : |T(f)(z)| >y} < C-exp (—-C”fllll ) (y>0, f€L®(Gm))

(with some constant C > 0 depending only on m) which follows by standard
extrapolation argument ({16]).

The analogue of the trigonometric translation (i.e. the multiplication by
exp(inz) for some integer n) can be defined as follows. Let the natural number
o0

n =) npM; be given and introduce the next functions

k=0
myg—1 me—1
d:’ = Z . Dy, dy = Z m Dy, (k €N).
j=li#Eme—ng—1 J=lj#nc+l

x
Furthermore, let us define the operators Ty, as follows:

M

M
Tlcf(f) = Z(f * d:)rzk"'l' l'tl{- (f) = Z(f * d;)r'kﬂk—nk—l
k=0

k=0
(M € N, f € L'Y(Gn)). Then these operators are uniformly of weak type
(1,1) and denoting by T"+, resp. 1™ their limits in measure we obtain
that the translation operators T* are uniformly of type (p,p) forall 1 <p<
< 400 ([15],[16]).

Now, if we consider the modified partial sums

S:x(f) = 'U:)nSn(fwn) (" €N, f € Ll(Gm))

(d;n is the complex conjugation of 4, ), then a simple calculation gives a
suitable expression for S;(P) by means of conjugations and translations
where P is an arbitrary Vilenkin polynomial ([15], [16]). This leads directly
to the estimation

ISR (Pl < Cp- 1Pl

and since the Vilenkin system is closed in LP(G,,) . the uniform type (p, p)
for S;'s and also for S,,’s follows.

We note that there are other methods (different from the above ” conjugate
function technique”) for the proof of the main theorem of this section. Wo-Sang
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Young [21] showed that the operators S, (n € N) are uniformly of weak
type (1, 1) for all m. F. Schipp [12] pointed out that the Vilenkin system can
be considered as a special product system and he proved a general statement
on such systems as bases in the L spaces.

Gy. Gat [5] has introduced Vilenkin-like systems (containing the Vilenkin
system as special case) and showed the uniform type (p,p) (1 < p < 4+00)

for the partial sum operators with respect to these systems. His proof is based
on our main theorem.

The Orlicz spaces

Finally, we mention that the main theorem of 5.2 can also be extended
to some Orlicz spaces. To formulate this extension we introduce the following
notations and definitions.

Let & be the set of all even real functions which are nondecreasing on
[0, +00) and have the following properties:

1) p(0) = p(+0) =0;
it) p(z) >0 (z>0);
iil) p(22) = O(p(z)) (zr— 400, p €P).

For every ¢ € ® let us define the space p(L) as the set of measurable
and almost everywhere finite functions f defined on [0, 1], for which

1
1fllp = /sp(lf(w)l)dm < 400
0

holds. If the functions f,g belong to (L), then let their ¢ -distance be
defined as ||f — ¢||,, which determines the ¢ -convergence in the usual way.
As special cases we get the LP spaces, the Orlicz spaces (if ¢ is convex), the
space of a.e. finite functions with the convergence in measure.

The system of functions g, € ¢(L) (n € N) is called a system of
representation in (L) if for every f € (L) there exists a series ) arg
with coefficients «; (k& € N) such that

n
f- Zak.‘lk =0.
k=0

"]

lim
=00
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(Note that the uniqueness of such series is not assumed. If also this holds,
then the system is a basis.) The following problem is due to P.L. Uljanov [17]:
how can the spaces (L) be characterized in which the classical systems of
functions are systems of representation? The aim of this remark is to give the
answer with respect to the Vilenkin system. Hence, the next statement is true

(3)):
the Vilenkin system is a system of representation in (L) if and only if
either w(L) ¢ L' or o(L) is equivalent to a reflexive Orlicz space.

In the case (L) C L' the Vilenkin system may be at most basis in
¢(L) since this system is uniformly bounded system of functions. In this
connection P. Oswald [9] showed that if a complete orthonormal system of
uniformly bounded functions is a basis in (L), then ¢(L) is equivalent to
an Orlicz space. It remains to answer only the question, in which Orlicz spaces
is the Vilenkin system basis? Our last theorem contains the answer ([3]):

the Vilenkin system is a basis in a separable Orlicz space if and only if the
space is reflezive.
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