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1. Introduction

The issue of approximation with spline functions of several variables was
studied by a number of mathematicians in the recent years. Concerning the
references, see, e.g. the following monographs: (1], [2], [7], (8], [3], [9]. The
spline functions of two variables of Hermitian type, and the spline functions of
n variables of reduced Hermitian type were studied and interesting theorems
were proved by M. Lénard in her papers [4], 5], [6] recently.

In this paper we give a construction of a modified spline function of type
(0,2). We prove existence, uniqueness and convergence theorems. We verify
the order of approximation, and also give error estimation. The construction is
the simplest possible one. It is expected that the results published here will be
well applicable to the partial differential equations and to their applications.
We note that the results discussed in this paper can be extended to the case of
more than two variables.

2. The construction of modified spline functions of type (0,2).
Existence and uniqueness

In the closed, finite rectangle domain D := {(z,y) : ¢ < z < b, a3 <
< y < ba} let the system of interpolation nodes

(2.1) A :{Pi;}, t=0,n1, J=0,no, n=23,--;n,=23,--
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be given, where P;; = (z;,y;),i=0,n;, j=0,n0.
To the system of interpolation nodes (2.1) let the arbitrary real numbers

(2.2) i), a'id), gl 1=0,n;, 0,n,
be given.

Let D; j denote the closed subdomain in D defined by P € D; ; = {(z,y) :
; <z < ziy1, ¥i <Y < Yi+1}. Furthermore, set

h; = (.‘l:;‘+1 — -‘L'i). 1=0,n; — 1, kj = (yj+1 - yj)r j= 0,ny — 1.

On the system of interpolation nodes (2.1) the spline function of type (0,2)
Sa(P) = Sa(z,y) constructed with the values (2.2) is defined as follows.

Forall Pe€ D;;, i=0,n-1,j=0,n~1, we have

(2.3) Sa(P)=S:(P)=
1
= r [Pl+1,J+l gij + Pij+1¢i+1,5 T Pi41j  Gij+1 + i ‘I:+1,J+1]
ikj
where
2.4) Pigrj+1 = (Zig1 — 2)(Yj+1 — ¥), Pij+1 = (2 —2:i)(Yj+1 — v),
' Pit1j = (Zig1 — )y — y; ), pij=(x—2)(y—y)
and
(2.5)
‘Ii.j — u(i'J) [ i — z)h'.a("vj) + (y] _ y)k]ﬂ(‘d)] ,
gis1,; = uli¥Hd) +i [(1 — 2o hiaUH) 4 (y, - y)‘Cjﬂ““’”] ,
1 . .
gijer = w2 [( ;= 2)hial ¥ 4 (y - yj+1)kjﬂ("’“)] ,
gij = ulHhItD 4 % [(1, — 2 )hiaHI 4 (- y].“)kjﬂ(m,m)] _

In consequence of (2.4), (2.5) the function Sa(P) is a polynomial of two
variables and of second degree also in the variables 2 and y in every D; j» but
there is no z~ y term in it.
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The spline function Sa(P) interpolates at the interpolation nodes P,-_j,

i=0,n1, j =0,ny. Namely, by (2.4), (2.5) susbstituting z = z;, (i = 0,n,),
Yy =yj, (j = 0,n2) into the expression of Sa(P) (5.2.3), we obtain

SalPij) = Sij(wi,yy) = uld),

SalPiprj) = Sij(zigr,yj) = w19,

(2.6) ' i)
Sa(Pij1) = Sij(zi,yj1) = I,
Sa(Pit1j+1) = Sij(igr, yipr) = wlHLIHY,
If PeD;j,i=0,n -1 j=0ny—1, then differentiating the identity

(2.3) twice, by (2.4), (2.5) we obtain the equality

(’)25'A(P) (9.5'54'(1)) _

(2.7 oxr = 0z
—E[(yj+1—y)_—2—‘+(y—yj) 2 ]
Differentiating the identity (2.3) twice, by (2.4), (2.5) we obtain the equality

(2.8) A.f ) = "g ) -
9y dy
1 Blid) 4 gug+h) BU+L1) 4 B+ +1)
=5 [(£i+1_17)'£——'.2£_—"+(17_1'i) 2[3 :

From (2.7), if y = yj or y = yj41. J = 0,n2 — 1, we obtain the equality

9*Sa(P) _9°Si(P) _ L) L G+d)
(29) Y=y, ) Y=Y,
9*Sa(P) _ 9°5:,(P) _ L Gi41) 4 o (i+1,41)
O0z? T 9z 9 (a ta ) :
Y=Y+ Yy=y,+1

From (2.8), since 241 — &; = hj, i = 0,n; — 1, the following equalities hold

925 (P) _0%Si;(P) _ L a6d) o pGi+1)
dy? ,_,,— dy? . —§(ﬂ +h )’
(210) r=x, ar =z,
8%Sa(P) _0%Si;(P) _ LGy | pli+1+1)
Oy? T 9y? T2 (ﬂ +h )
T=T 41 T=ZT 41
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By (2.3), (24), (2.5),ify=yj,j=Lnys—Landz; <z <z, i=0,n — 1,
we obtain that

Sa(z.y;) = Sij(x,y;) =

| —

T -
(Lig1 — &) [U“'” + g hili = 1‘)0‘“’”] +

>

(2.11) 1 |
+ oo (@ = zig) [U“H'j) + ghilz - $i+1)a(‘+l'j)] =

= S;;-1(z,y;),

andifz=2;,i=1,n -1 y; <y<yj41.j =0,n2—1, then in consequence
of (2.3), (2.4) and (2.5) we have the equality

(2.12) Saleiy) = Sij(zi,y) = Sigr,(2i,y).

From (2.11) and (2.12) we obtain that the function Sa is continuous in the
closed domain D, i.e. Sp € C(D). However, the partial derivatives of Sa(P)

are not continuous at the interpolation nodes P, ;.

Sa is not a modified spline function of type (0,2), because at the interpo-

lation nodes P” t=0,n;, j =0, ny the second order partial derivatives of Sa
interpolate the values

1

% (a,(i'j) +alithy >) . respectively 3 (ﬂ“'” + ﬁ(i‘jﬂ))

(t=0,n; -1, j=0,ny-1),
instead of the values a; ;, 3; ;.

We verify that Sa in (2.3) is a unique modified spline function of type (0,2)
with the properties that in every subdomain D;;yi=0mn -1 j=0,n,-1
it is identical with a second degree polynomial in 2 and y variables including
no z%y? term and satisfies the equalities (2.6) and (2.10).

Namely, let us suppose there is another spline function S} satisfying the
equalities (2.6), (2.9), (2.10). Then every difference is of the form
Sa(P) = Sa(P) =5, ;(P)=57;(P)=

(2.13) , . )
=c1 + a2k +c3y + caxy + cs52” + sy + crTY” + c8T Y.
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However, since according to the assumption and by (2.9) we have

9*S; j(P) _ 9*S;,(P) -0
oz? 22 -
y=y; y=y,
825 ;(P) | 9'55(P) —0
Oz? Oz2 -
Y=v;+1 Y=Y;+1

so from (2.13) we obtain
2c5 + 2cy; =0
2¢5 + 2¢gyj+1 = 0,

and since yj41 — y; = hj # 0, so cg = cs = 0. Similarly, from (2.10) it comes
that ¢z = ¢ = 0. By (2.6) and from (2.13) for the coefficients ¢;, 1 = 1,2,3,4
we obtain a homogeneous system of linear equations. Its determinant is D =
= h}k? # 0, this is easy to evaluate. Thus ¢; = 0, i = 0, 8, so in consequence
of (2.13) we have Sp = S},

By reason of the foregoing we can assert the following

Theorem 1. For the given system of interpolation nodes (2.1) and the
arbitrary real numbers (2.2), Sa in (2.3) is a unique modified spline function
of type (0,2) which satisfies equalities (2.6), (2.9) and (2.10).

3. Approximation theorems

In the closed, finite rectangle domain D : {(z,y) : a1 <z < bj,e2 <y <
< by} let the function of two variables u be given for which u € C*(D), i.e. the
functions u, uz, ty, Uzz, Uyy and uyy = Uy, in D are continuous.

The modulus of continuity of the functions 4z, uyy and uy; is denoted by
wy(h),wa(h), wa(h), respectively, i.e. if PLPy < h, Py, P» € D, then

wi(h) = max |tpe(Pr1) — gz (P2)|,
(3.1) wa(h) = max luyy(P1) — uyy(P2)],

w3(h) = m’?'xlury(Pl) — ugy(P2)|.

Obviously, w;(h), 7 = 1,2,3 are monotone increasing functions, i.e. if hg > h;,
then w;(h2) > wi(h1). By the continuity if A — 0, then w;(h) — 0.
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For the domain D let the system of interpolation nodes
(3.2) A

a1 =20<2; < <2 <Tip1 << Lp-1 <Zp,=b;, n =23, -
02=y0<y1<"'<yj<yj+l<"'<ynQ-—1<yn2=b27 ny =23, -

be given, for which we use the following notations, too:

hi =241 — &, maxh;=h, minh; =h"
1 1
kj = yitv1 — i, mJja.,\'kj =k, 11}iu kj = k*,

and

} k
(3.3) LA,

=c2, c¢=max(c,cy).

h* :

In the following D,-'j t=0,ny -1, j =0,ny — 1 denotes the subdomains
of the closed domain D defined by

(3.4) Dij:{(x,y):2i <z <2ipr, ¥ SY< yjn}
Here after we put the following notations

w(zi,yi) = w7 o) = uga( ) = wl), B = uyy(ai, ) = uly),

(3.5) i=0,n,, j=0,n,

For the system of interpolation nodes (3.2) and for

PGD,‘_J“ i=0,77-]—1, _)':0,7'13—1

the modified spline function of type (0,2) Sa(P.u) = Sa(P) corresponding to
the function u(P) is defined by (2.3)-(2.5).

If into equations (2.7)-(2.10) we write the values u's’’ instead of alhi),
ug,',;‘” instead of 37} i = 0,n; — 1, j = 0,n, — 1, then we obtain the following
equalities:

O*Sa(P) _ 6°Si5(P) _

(3:6) 822~ 0rz
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S PN Sy AP A ) S
= kj Yi+1 — Y 9 Y—Uy; 2 ,
(3.7) *Sa(P) _ 9*S; j(P) _
' oyt T Oy?
1 uLig” + “Liy,j+l) u(yiy+1,j) + ugiy+1,j+1)
== |@ip1—2) —————— + (2 —2i) ,
h; [ 2 2
and
9?Sa(P) _ 9%Si;(P) _ l (u(i'j) + u(i+l,j))
O22 - Hz? - 9\ %z TT ’
y=y; y=y;
(3.8)
9°5a(P) _ 9%5:,(P) -1 (u+) + G40
61.2 - 01.2 9 T T )
Y=Yi+1 ST
furthermore, we have
9°Sa(P) _9%Si;(P) _lrin Gi+1)).
dy? T Ty - =5 (“w +uyy ) '
(39) r=r, r=z,
6?SA(P) C')'“IS,"](P) 1 ny i1 g41
To | T ow | Ta(wneen).
Z:I.+1 x=$.+1

We note that also equations similar to (2.11) and (2.12) are satisfied, i.e.
Sa(u) = Sa € CG(D). And by Theorem 1 Sa(P) (3.6) is a unique modified
spline function satisfying also the required conditions.

In the proofs we will need the finite Taylor expansion of the functions
ug(P), ux(P) uy(P),if PED;;,1=0,n; -1, j=0,np—-1:

(3.10) w(P) = v\ 4wl (2w - 2) + uy'j)(y -y)+
r — T 2 —y;)?
+uu-(P1)(—2—)— + Uz (Pr)(z = 2i)(y —yj) + uw(Pl)(yTy,)‘
where

PreDij,  ul) =up(ziy) ul) = uy(@ y);
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and
(3.11) u(P) = w7 + uze(Po)(2 — 2:) + usy (P2)(y — 45),
and

(3.12) uy(P) = uf?) + uye(Ps)(x = i) + uyy (P3)(y = 1),

where Py, P3 € D; ;.
In the following we always have P, € D; j, k =4,5,...
We prove the following

Theorem 2. Let u € C*(D) and denote Sa(-,u) the spline function
corresponding to the nodes (3.2) and generated by the function v. Then for all
PeD

82Sa (P 5,

(3.13) uu(P)—%ﬁ”l = ety - L | < n i,
0%Sa(P . 0%S;

(3.14) uyy(P) - % = [uxe(P) ~ Tt S walh + 8),

where wi(h) is the modulus of continuity of the function uz,, and wo(h) is that
of the function of uyy tn D.

Proof. By (3.6) for P € Dy; ;) we have

9°S; ;i (P
wet) - T30 -
N W) 4 L) ul T | L)
= |uze(P) — = [(yj41 — 1 y - yj
Uuzz(P) 5 [(y,+1 v)= 5 +(y—9) 5
Since uz-(P) is continuous in D, we obtain
(‘J) (i+1,5) (1,j+1) ('+1 J+1)
+u n + uz
+ = uzz(Py), = 2 = ugz(Ps),

where Py = (2; + t4hi,y;), Ps = (zi + tshi,yj+1) and 0 < t4,t5 < 1. If
y=y; +tkj, 0 <t <1, then we get

2Q. .
Uzr(P) - 5_%{2(_132 = |usz(P) = [(1 = t)uzs(Ps) + tuzz(Ps)]| <
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< |uze(P) = u(Ps)| < wi(PPe) S wi(h + k).

Namely, since P, Ps € D; ; we have PPs < \/h} +k? =6 < VA2 +k? < h+k.

In a similar manner the equation

Uyy (P) —

2_‘5‘1_}))‘<w2 (h+ k)

can be verified by (3.7), since uy,(P) is continuous in D. It is obvious that
wi(h + k), we(h+k)—0,if hk—0,ie. if n; — 00, ny — 0.

Theorem 3. Letu € C*(D). Then the spline function (2.3) corresponding
to the nodes (3.2) satisfies

Sa(P
(3.15) uM(P)—Tf\a(y—) =

92S:;(P)

usy(P) = 020y

< (1 +2c)w(9),

where w3(6) is the modulus of continuity of the function uzy, and w(6) is that
of the function uyy n D, furthermore

w(6) = max[w;(8),w2(8),ws(6)],
c is the constant at (3.3).
Proof. By Taylor expansion
WD) = g 6) i), 4 kg

h? k?
+ 'u.“,.(P’,')-_zL + uwy(P—;)h;k- + uyy(P7)—éL,

|
m..u

u(1+1Jl — u(”)+ u(' th + U“(Ps)

o~
Nl’“‘m

WD = ) 8 4 uyy (Po) =2

where P;, Ps, Py € D; ;. Differentiating the spline function (2.3) first with re-
spect to z, then to y, by (3.10)-(3.12) after a simple calculation and considering

$=$i+t‘h,’, OSt.Slr y=y]+tk]) OStSI,
we obtain that
325.‘1'(13)
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h; k;
= ugy(Pr) + [uea(Pr) — “”(PS)]Q_kj + [uyy(Pr) - uyy(Ps)]Q—,;'F

+[ ( i+ 1+1)] [ <u(rt;:1) _ 'U:(,,-1._,}J+1'J) + <u:(;:1,]+1) _ ug:—l,;)) ] +

ax;
2y = (yj + yj+1)) (i) L) o .
* 4h; (UWJ = Uy, ) + (uby CARUE U§§] )) .

By (3.16) and (3.3), applying the triangle inequality we have

0%S; (P
(3.17) uzy(P) — —('3%)— < w3(&) + cwi(8) + w2(8)).
. . S,'j .
Since we supposed that u,, = uy., so for the functions u,, and 3 6 we obtain
yoy

also inequality (3.17). If
w(8) = max[wi(8),w2(8),ws(8)],

then by (3.17) Theorem 3 holds.

Theorem 4. Under the conditions of Theorem 2 the following inequalities
hold:

0Sa(P 9S: j(P
(3.18) uy(P) - ———g—i_—l = |uy(P) — ——a—’x(——) < (34 2¢)w(6)6,
and
(3.19) uy(P) - 3—53—;1)—) = |uy(P) - %jﬁ < (34 2¢c)w(6)4,

where ¢ is the constant at (3.3).

Proof. Applying the finite Taylor expansion we have the inequality

9S: ;(P
u,(P) - —-—————gx( )l =
- 651',]' 0255,]‘
(320) - [U; al_ }rfr,‘ + u:L'.’L'(PiO) - 81'2 ] (x - 1“!)""
9*S;
+ |usy(Pro) — 8;1:8] , ](y—yy) )
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where Py € D; ;.

Differentiating the function Sa(P) = 5;;(P) with respect to z and
substituting » = x;, y = y;. then applying the finite Taylor expansion, we
obtain the equality

95, ; 1 . .. . . ok
01-.] F(UUHIH — i)y — (ulFI) 4 ug;z,J))Z =

hi

5

Substituting this into equality (3.20), then applying the triangle inequality,
since

= Ugf’j} + [Uu(Ps) - urr(Pll)]

by Theorems 2 and 3, we have the inequality

ug(P) - ‘d_%af‘a <

< 2wi(6)h + wa(8)k + clwi(8) + wa(8)]k = (2h + ck)wy (8) + cwa(8)k + wa(8)k.
Since h,k < 6§ = VhZ + k2, and if

w(6) = max(w;(8),wa(8),ws(8)],
we have the inequality

uz(P) - 9%’?' < (g + 2c) w(6)8.

In a similar manner it can be verified that the following inequality holds

_ 85i,(P)
Oy

uy(P) < (-Z- + 2c> w(6)6.

Theorem 5. Under the conditions of Theorem 2 the following inequality
holds:
(3.21) [u(P) = Sa(P)] = [u(P) = Si ;(P)| < (T+ 6c)w(6)é?,

where ¢ is the constant at (3.3).
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Proof. Applying the finite Taylor expansion, and since
w(ai y;) = a0 S (e yy) = ut) P = P(zi,y;),

we obtain that

lw(P) = Si;(P)| =

as; ;
YT o

P, ,

8251' ; - 2 8251' ]
+ [un— al-'-"J] N ( 5 L [u:cy - 81'6;] . (& —zi)(y—y)+
&S (y —z;)*
+ [uyy - ayg‘)] . 2 i) .

Applying the triangle inequality and Theorems 2-4 and since
¢—2zi<hi<h<$,  y—y; <kj<ké,
we have the inequality
[u(P) = S;,j(P)| < (7 + Gc)w(6)6>.

The convergence follows from Theorems 2-31if 6 — 0, i.e. if n; — oo,
Ny — 00,

The convergence is of " Jackson order” if we compare it with the polynomial
approximation. The convergence is simultaneous, since the modified spline
functions Sa simultaneously approximate the functions u, uz, ty, Uzz, uyy and
uzy ~Jackson order”.

By means of Sa an extremely good integral approximation procedure can
be given. Namely, by Theorem 5 if u € C*(D), then the following inequality

holds:
by ba

/ / [u(z, y)dydz — Sa(z,v)] dydz| <
by b?
(3.22) < / / lu(z, y) — Sa(z,v)| dydz <
a; G2

< (by — a1)(ba — a2)(T + 6c)w(6)62.
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For the sake of simplicity let us put a;

= as = 0, let the system of
interpolation nodes be of equal distances, i.e.
b —_—
a’i:z_l) t=VU,ny, 17’1_213v' )
]
N
i =3 J=0,ny, ng =23, .

In case of this system of interpolation nodes, integrating the function Sa(P) =
= Sa(z,y) (2.3) and since

by
Tigl — & = h = '1;—-
1

by ba
/ / Sa(z,y)dydz =
0 0
b1b2 n;-1 na-1

Y [u(w‘) +ul+LI) g g () u(i+1.j+1)] -
4n ns

bs
) Yi+1 — Y = F = —

n2

)

we obtain that

i=0 ;=0

, b2 ‘ . o
(3.23) - 12:1,_, [“(x'i” + alt a4 u(r‘x“"“)] -
i

_ 2 \0d) 4 (i+15) (i,j+1) (i+1,5+1)
12n3 [“yy gy T F Uy Uy ]}

If the system of interpolation nodes is not of equal distances, then (3.23) is a
little more complicated, but the integration is easy, because the function Sa is
simple.

Example 1. Let us put

uzu(;!:,y):;cey, a1=a2=01 9’1——-’.;]221, h=k=%1
then by (3.23) the following can be easily evaluated

1 1
//SA(r,y)dydw =
0 0
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9
1 1 ) ‘
=== ——=) (14" 1+§ e | =0,85914019.
(40 48 - 103 o

On the other hand

1

1
//xeydyda: = %(e —1) =0.8591408 - - -

0 0
Thus, the approximation is extremely good.
By Theorem 2 the approximation of the Laplacian

3, a'.‘u
t o

S
IS

(3.24) Au = -

D

22

of a function u € C?*(D) becomes possible. If the Laplacian of the spline
function Sa(P;u) = Sa(P) (2.3) belonging to the function u is

- 3*Sa(P) 32513(1’) 0%S:,i(P) , 9°Si;(P)
BSa(P) =53 o = ot gy

(3.25) PeD,;, i=0,m -1, j=0,n,— L
Then by Theorem 2 we have the inequality

|[A(u— Sa)l £

v 07 Sij(P ) d%u 825,-1-(1’)
bl AV BPG
= |0z 0x? ‘ + 0y? ( -

Swi(6) +ws(d).

1.,
Example 2. If u(2,y) = 51"81', then
22
Au(a,y) = (l + 7) eY,

19 19
1 it 1 t
and its value at P = P(ZO 20)

=3,752511202 - -

(’"- 20'3/‘20)

Au
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Let

D={0<z<1, 0<y<l1} T; = 1—

and h=%k=0,1.

In case of this system of approximation nodes the value of the Laplace
operator evaluated with the spline function Sa belonging to the function u at

19 19\ .
P= (5670) is
§ 19 19
Sal—= — ) =3,757% .
A A<20 _20) 7572073

This is a quite good approximation, since the evaluation was made with the
polynomial Sa (P) = Soo(z,y) belonging to the last subdomain

Dgo={(z,y): 0,9<z<1, 0,9<y<1}.

It is obvious that here it is where the approximation is the worst. If the value
of h = k is smaller, e.g. h = k = 0,01, then the approximation is much better.
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