A REMARK ON ρ-NORMAL MATRICES

B. Háy (Budapest, Hungary)L. Pasquini (L'Aquila, Italy)P. Vértesi (Budapest, Hungary)

Dedicated to Professor J. Balázs on his 75th birthday

1. Introduction. Preliminary results

1.1. Let us consider a triangular interpolatory matrix $X = \{x_{kn}\} \subset [-1, 1]$ defined by

$$(1.1) -1 \le x_{nn} < x_{n-1,n} < \ldots < x_{2n} < x_{1n} \le 1, n = 1, 2 \ldots$$

The unique Hermite-Fejér (HF) interpolatory polynomial $H_{nm}(f, X, x) \in \mathcal{P}_{nm-1}$ of higher order $(m \ge 1$, fixed integer) is defined by

(1.2)
$$H_{nm}^{(t)}(f, X, x_{kn}) = \delta_{ot} f(x_{kn})$$
, $k = 1, 2, ..., n; t = 0, 1, ..., m-1$,

where $f \in C$ (= f is continuous on [-1,1]). (m = 1: Lagrange-, m = 2: the classical HF-interpolation.)

Sometimes we use the Hermite (H) polynomial $\mathcal{H}_{nm} \in \mathcal{P}_{nm-1}$ uniquely defined by

(1.3)
$$\mathcal{H}_{nm}^{(t)}(f, X, x_{kn}) = f^{(t)}(x_{kn}), \quad 1 \le k \le n; \ t = 0, 1, \dots, m-1$$

 $(f^{(m-1)} \in C)$. One can prove the following relations

(1.4)
$$\mathcal{H}_{nm}(f,X,x) = \sum_{t=0}^{m-1} \sum_{k=1}^{n} f^{(t)}(x_{kn}) h_{tknm}(X,x) ,$$

Research supported by Hungarian National Science Foundation Grant No. T7570 (first and third author) and No. T17425 (third author), and by the MURST Found (Italy, second author)

(1.5)
$$H_{nm}(f, X, x) = \sum_{k=1}^{n} f(x_{kn}) h_{oknm}(X, x) ,$$

where, by obvious short notations, $h_{tk} \in \mathcal{P}_{nm-1}$ satisfy

$$h_{tk}^{(r)}(x_{sn}) = \delta_{tr}\delta_{ks}$$

and have the form

(1.7)
$$\begin{cases} h_{tk}(x) = v_{tk}(x)(x - x_k)^t \ell_k^m(x), \\ v_{tk}(x) = \frac{1}{t!} \sum_{i=0}^{m-1-t} e_{ik}(x - x_k)^i, \qquad e_{ik} = \frac{(\ell_k^{-m}(x))_{x=x_k}^{(i)}}{i!}, \end{cases}$$

 $\ell_k(x)$ are the fundamental polynomials of Lagrange interpolation of the form

$$(1.8) \quad \ell_k(x) = \frac{\omega_n(x)}{\omega'_n(x_k)(x - x_k)} , \qquad \omega_n(x) = c_n \prod_{k=1}^n (x - x_k) , \qquad c_n \neq 0 ,$$

$$(0 \le t, s \le m-1, 1 \le k, s \le n, n = 1, 2, \ldots).$$

When m = odd, a Faber-type result can be proved (cf. J.Szabados [1,[11]] (the reference [11] in the survey paper P.Vértesi [1])).

However for m = even - what will be supposed from now - we can have many matrices X with the good convergence property

(1.9)
$$\lim_{n \to \infty} ||H_{nm}(f, X, x) - f(x)|| = 0 \quad \forall f \in C,$$

where $\|\cdot\|$ is the maximum norm in [-1, 1] (cf. L.Fejér [1,[1]] (m = 2), R.Sakai and/or P.Vértesi [1, [12], [13], [14]] $(m \ge 2)$).

For the classical case (m=2) the idea of ρ -normality was introduced and applied in papers L.Fejér [1,[1]] and G.Grünwald [1,[6]]. In cases $m=4,6,8,\ldots$ the definition was generalized by Y.Shi [1,[2]]. The modification of Shi's definition turned out to be very flexible. Namely, let I_{1n} and I_{2n} be two proper disjoint subsets of $J_n:=\{1,2,\ldots,n\}$ with $|I_{1n}|=r_{1n},\ |I_{2n}|=r_{2n}:=:=n-r_{1n}$ with $0 \le r_{1n} \le n$.

Definition. Let m be even. X is ρ -normal with parameters r_{1n}, r_{2n} and m (shortly X is (ρ, r_{2n}) or (ρ, r_{2n}, m) -normal) iff with a proper $\rho > 0$ and $n \ge n_0$ (i)

$$v_{oknm}(x) \ge \rho t! |v_{tknm}(x)|$$
 for $1 \le t \le m-1, n \ge n_0, |x| \le 1, \text{ if } k \in I_{1n},$

(ii)
$$\begin{cases} \left\| \sum_{k \in I_{2n}} |h_{oknm}(x)| \right\| = O(1), & \lim_{n \to \infty} \left\| \sum_{k \in I_{2n}} |x - x_{kn}|^{\delta} |h_{oknm}(x)| \right\| = 0, \\ \text{for every } \delta > 0, & \text{moreover} \end{cases}$$

$$\left\| \lim_{n \to \infty} \left\| \sum_{k \in I_{2n}} |h_{tknm}(x)| \right\| = 0, \quad \left\| \sum_{k \in I_{2n}} |v_{tknm}(x)| \ell_{kn}^{m}(x) \right\| = O(1),$$

$$1 < t < m - 1. \end{cases}$$

This definition was introduced in P. Vértesi [4]; when $r_{2n}=0$, we get back Shi's original definition. The classical case, treated by L. Fejér and G. Grünwald, corresponds to m=2 and $r_{2n}=0$; they called the matrices simply ρ -normal. When $r_{2n}=0$, $(n=1,2,\ldots)$, the polynomials H_{nm} are positive linear operators; if r_{2n} are "small" we can say that our system X is "practically" ρ -normal.

Using the above definition the following statement holds true for $X^{(\alpha,\beta)} = \{x_{kn}^{(\alpha,\beta)}\}$ (= the roots of the Jacobi polynomials $P_n^{(\alpha,\beta)}(x) \in \mathcal{P}_n \setminus \mathcal{P}_{n-1}$, $n = 1, 2, \ldots, \alpha, \beta \geq -1$, fixed; cf. G.Szegő [2, Ch.4], say).

Theorem A. Let m be even fixed, and let $\alpha, \beta \geq -1$ satisfy the conditions

(1.10)
$$C_m := -\frac{1}{2} - \frac{1}{m} < \alpha, \beta < -\frac{1}{2} + \frac{1}{m} := A_m.$$

Define $\rho_0 > 0$ by

(1.11)
$$\rho_0 := \min \left(\frac{1}{2} - \frac{m}{4} - \frac{\alpha m}{2}, \quad \frac{1}{2} - \frac{m}{4} - \frac{\beta m}{2} \right).$$

Then for arbitrary fixed $\varepsilon > 0$ with $0 < \varepsilon < \rho_0$ there exists a constant $G = G(\alpha, \beta, m, \varepsilon)$ such that $X^{(\alpha, \beta)}$ is (ρ, G, m) -normal with $\rho = \rho_0 - \varepsilon$. Here ρ_0 cannot be replaced by any $\tilde{\rho}_0 > \rho_0$. Further, if $\Gamma := \max(\alpha, \beta) \ge A_m$ or $\gamma := \min(\alpha, \beta) < C_m$, the statement does not hold true.

The above theorem was proved in P. Vértesi [4]. However, if m=2, even the case $\gamma=-\frac{1}{2}-\frac{1}{m}=-1$ was settled and was proved that $X^{(-1,1)}$ is the only 1-normal matrix; cf. L.Fejér in [1,[8, p. 157 (-3,-5)]] and L. Pasquini [1,[9]] (if m=2, then $v_{1k}(x)=1$, so (i) yields $v_{ok}(x) \geq \rho$ whence by $1 \equiv v_{ok}(x_k) \geq \rho$ we obtain relation $\rho \leq 1$; that means the result is the best possible).

2. The case $\rho = 1$ when m > 2

2.1. The first aim of this paper is to settle the case $\gamma = C_m = -\frac{1}{2} - \frac{1}{m}$. We state using notation (1.11)

Theorem 2.1. Let m be even and let $\gamma = C_m$. Then for arbitrary sequence $\{G_n\}$ with $\lim_{n\to\infty} n^{-2/3}G_n = \infty$, the matrix $X^{(\alpha,\beta)}$ is (ρ,G_n,m) -normal with $\rho = \rho_0 - \varepsilon$, and $0 < \varepsilon < \rho_0$, arbitrary fixed.

Remarks. 1. If $\alpha = \beta = C_m$, then $\rho_0 = 1$, whence $\rho = 1 - \varepsilon$. On the other hand by $1 = v_{ok}(x_k) \ge \rho(m-1)!$ $v_{m-1,k}(x_k) = \rho$ $(v_{m-1,k}(x) \equiv 1/(m-1)!)$, we get $\rho \le 1$, i.e., again, our result is, in a sense, the best possible.

- 2. If $m \ge 4$, a possible question is to obtain other $(1 \varepsilon, G_n, m)$ matrices with $G_n = o(n^{2/3})$. (The proof of Theorem 2.1 with a small modification holds when $G_n = An^{2/3}$, A > 0 is big enough.)
 - **2.2.** Finally, using the *original* definition, i.e. X is ϱ -normal iff

$$(i^*) v_{oknm}(x) \ge (-1)^{t+1} \varrho t! v_{tknm}(x)$$
for $1 \le t \le m-1, n \ge n_0, |x| \le 1, 1 \le k \le n$,

(cf. Y. Shi [1[2]]), we prove

Theorem 2.2. If $m \ge 4$, even, then there is no 1-normal matrix.

Remark. Conditions (i*), using [1[2,(2.8)]], imply $v_{ok}(x) \ge \varrho t! |v_{tk}(x)|$ (cf. (i)).

3. Proofs

- 3.A. Proof of Theorem 2.1.
- **3.1.** We use many formulae and ideas of papers [1,[12],[13],[3] and [4]]. For sake of simplicity, we suppose $\alpha = \beta = C_m = -\frac{1}{2} \frac{1}{m}$. First we verify (i) if $I_{1n} := \{k; \min(k, n-k+1) := K \ge G_n/2, n \ge n_0\}$, whence obviously $|I_{1n}| = G_n$ (for simplicity, G_n =even).

3.2. In [4,(3.26)] we obtained relations

$$(3.1) v_{ok}(x) \ge (1 - \varepsilon)t! \ v_{tk}(x) > 0, 1 \le t \le m - 1$$

if $|k-j| \le c_0$, $K \ge k_0$, $n \ge n_0$, where $|x-x_{jn}| := \min_{1 \le k \le n} |x-x_{kn}|$, n_0 is chosen according to the fixed values of c_0 and k_0 . Relation (3.1) shows that we have to prove (i) only when $|k-j| \ge c_0$. By [4, (3.27)] we get

$$(3.2) e_{m-2,k}(x-x_k)^{m-2} + e_{m-1,k}(x-x_k)^{m-1} =$$

$$= e_{m-2,k}(x-x_k)^{m-2} \left\{ 1 - \varepsilon_k \frac{x-x_k}{1-x_k^2} \right\}, \ K \ge k_0, \ n \ge n_0,$$

where $\varepsilon_k = \varepsilon_{kn} = O\left(\frac{1}{K} + \frac{1}{n}\right)$. Let $0 \le \delta \le x_k < 1$, $x \ge -1/2$, say. Then for the function $L(x, x_k) := \{\ldots\}$ we get by $2K \ge G_n$

$$L(x, x_k) = 1 + O(1)\left(\frac{1}{k} + \frac{1}{n}\right)\frac{|k+j||k-j|}{k^2} = 1 + O(1)\left(\frac{n^2}{k^3} + \frac{n}{k^2}\right) = 1 + o(1)$$

(we used $|x - x_k| \le c|k - j||k + j|n^{-2}$), whence

$$(3.3) e_{m-2,k}(x-x_k)^{m-2} + e_{m-1,k}(x-x_k)^{m-1} =$$

$$= (1+o(1))e_{m-2,k}(x-x_k)^{m-2}, k \in I_{1n}.$$

Another important relation proved in [4, (3.29)] is

$$(3.4) A \sum_{i=0}^{2t-1} |e_{ik}(x-x_k)|^i \le e_{2t}(x-x_k)^{2t}, 2 \le 2t \le m-2$$

for any fixed A > 0 if c_0 and k_0 are big enough.

Then, by (3.3), (3.4) and (1.7)

$$\frac{t!|v_{tk}(x)|}{v_{ok}(x)} \leq \frac{\sum\limits_{i=0}^{2t-1}|e_{ik}(x-x_k)|^i}{\left(1+\frac{1}{A}\right)e_{m-2,k}(x-x_k)^{m-2}+e_{m-1,k}(x-x_k)^{m-1}} \leq$$

$$\leq \frac{\frac{1}{A}e_{m-2,k}(x-x_k)^{m-2}}{\left(1+\frac{2}{A}\right)e_{m-2,k}(x-x_k)^{m-2}} = \frac{1}{2+A} \leq 1-\varepsilon \quad \text{if} \quad K \in I_{1n}, \quad |k-j| \geq c_0.$$

So we verified (i) for $2 \le t \le m-1$. If t=1, we write

$$\frac{v_{ok}(x)}{v_{1k}(x)} \ge \frac{\left(1 - \frac{2}{A}\right) e_{m-2,k} (x - x_k)^{m-2}}{\left(1 + \frac{1}{A}\right) e_{m-2,k} (x - x_k)^{m-2}} > 1 - \varepsilon , \quad K \in I_{1n}, \quad |k - j| \ge c_0$$

if A is properly chosen (see (3.3) and (3.4)).

3.3. Now we verify relation (ii) for $k \in I_{2n}$. Estimation

$$\left\| \sum_{k \in I_{2n}} |h_{ok}(x)| \right\| = O(1)$$

is an obvious consequence of $\left\|\sum_{k=1}^{n} |h_{ok}(x)|\right\| = O(1)$ which was proved in [3, 3.8 and 3.9]. Now let us prove the second relation in (ii).

We write with $\eta_n \searrow 0$

$$S_1 := \sum_{k \in I_2} |x - x_k|^{\delta} |h_{ok}(x)| \le \sum_{k=1}^n \ldots = \sum_{|x - x_k| \le \eta_n} \ldots + \sum_{|x - x_k| > \eta_n} \ldots := T_1 + T_2.$$

Here by $\left\|\sum_{k=1}^{n}|h_{ok}(x)|\right\|=O(1)$ we obtain relation $T_1 \leq \eta_n^{\delta}\left\|\sum_{k=1}^{n}|h_{ok}(x)|\right\|=o(1)$. Further, by (1.7)

$$T_{2} = \sum_{|x-x_{k}| \geq \eta_{n}} \left(\frac{P_{n}(x)}{P'_{n}(x_{k})} \right)^{m} \frac{1}{(x-x_{k})^{m-\delta}} \left(1 + |e_{1k}||x-x_{k}| + \ldots + |e_{m-1}||x-x_{k}|^{m-1} \right) \leq \frac{c}{\eta_{n}^{m-\delta}} \sum_{k=1}^{n} \left\{ \left(\frac{P_{n}(x)}{P'_{n}(x_{k})} \right)^{m} \left(\sum_{i=0}^{m-1} |e_{ik}| \right) \right\}.$$

On the other hand, in [4, 3.9. A] we proved that the sum $\sum_{k=1}^{n} \{...\}$ can be estimated by ε_n , where $\varepsilon_n \searrow 0$. So with a proper η_n we obtain $T_2 = o(1)$, whence $S \leq T_1 + T_2 = o(1)$ which was to be proven.

To get relations $\left\|\sum_{k\in I_{2n}}|h_{tk}(x)|\right\|=o(1)$ we remark that by standard calculations even the estimations

(3.5)
$$\left\| \sum_{k=1}^{n} |h_{tk}(x)| \right\| \leq \begin{cases} c \frac{\log n}{n^t} & t \text{ is odd,} \\ \frac{c}{n^t}, & t \text{ is even,} \end{cases} t = 0, 1, \dots, m-1$$

can be verified (cf. [1, [1, Theorems 1 and 2]] and relations (3.19)-(3.25) in [4]).

Finally, we prove $\left\|\sum_{k\in I_{2n}}|v_{tk}(x)|\ell_k^m(x)\right\|=O(1)$. By the formulae quoted above one can get

$$\sum_{k\in I_{2n}}|v_{tk}(x)|\ell_k^m(x)\leq$$

$$\leq c \sum_{\substack{k=1\\k\neq j}} \frac{k^t}{|k-j|^{t+1}|k+j|^t} \leq c \quad \text{whenever} \quad 1 \leq t \leq m-1 \ .$$

3.B. Proof of Theorem 2.2.

3.4. We suppose that X is 1-normal. Then, by (i*) we get $v_{ok}(x) \ge v_{1k}(x)$ if t = 1, whence $v_{ok}(x) - v_{1k}(x) = e_{m-1,k}(x - x_k)^{m-1} \ge 0$. Here m-1 is odd, so supposing that $-1 < x_k < 1$, we conclude that

$$e_{m-1,k}=0$$
, if $|x_k|<1$.

Now let t = 3. Again, by (i*) $v_{ok}(x) - 3!v_{3k}(x) = e_{m-3,k}(x - x_k)^{m-3} + e_{m-2,k}(x - x_k)^{m-2} + 0 = (x - x_k)^{m-3} \{e_{m-3,k} + e_{m-2,k}(x - x_k)\} \ge 0$. Let $|x_k| < 1$. Then if $e_{m-3,k} > 0$, say, for a proper x with $-1 \le x < x_k$, $x \approx x_k$, we would get $0.5e_{m-3,k} \le \{\ldots\}$ whence $(x - x_k)^{m-3} \{\ldots\} < 0$ a contradiction. The case $e_{m-3,k} < 0$ is similar, i.e. we can conclude

$$e_{m-3,k} = 0$$
, if $|x_k| < 1$,

whence by $0 \le (x - x_k)^{m-3} \{...\} = e_{m-2,k} (x - x_k)^{m-2}$ we get relations

$$e_{m-2,k} \ge 0$$
 if $|x_k| < 1$.

Using induction we obtain

(3.6)
$$e_{tk} = 0$$
 if $|x_k| < 1$, $t = 1, 3, ..., m-1$, $n \ge n_0$,

and

(3.7)
$$e_{tk} \ge 0$$
 if $|x_k| < 1$, $t = 2, 4, ..., m - 2$, $n \ge n_0$.

Using relations (3.6) only, we state

$$\ell_{kn}^{(t)}(x_k) = 0, \quad |x_k| < 1, \quad t = 1, 3, \dots, m-1, \quad n \ge n_0.$$

Indeed, from

(3.9)
$$(\ell_k^s(x))^{(t)} =$$

$$= \sum_{\substack{i_1+i_2+\dots+i_j=t\\1\leq i_1\leq i_2\leq i_1\leq t}} A(I)(s)_j \ell_k^{s-j}(x) \ell_k^{(i_1)}(x) \ell_k^{(i_2)}(x) \dots \ell_k^{(i_j)}(x), \quad t \geq 1,$$

where $A(I) = A(i_1, i_2, ..., i_j) > 0$, integer, s is real, $(s)_j = s(s-1)...(s-j+1)$ (cf. [1 [12, (4.1)]]), using (1.7) we get

$$0 = e_{1k} = (\ell_k^{-m}(x))'_{x=x_k} = -m\ell_k'(x_k) , \quad |x_k| < 1,$$

which is (3.8) for t = 1. Similarly, with obvious short notations

$$0 = e_{3k} = \frac{(\ell_k^{-m})'''}{6} = \dots (\ell_k')^3 + \dots \ell_k' \ell_k'' - m \ell_k''' = -m \ell_k''' \quad |x_k| < 1,$$

whence we get (3.8) for t=3. Using induction, we get (3.8) for the other values of t, considering that in the sum each term but the last one contains at least one factor $\ell_k^{(i_r)}$ where $1 \le i_r < t$ and odd, i.e. by the induction condition $\ell_k^{(i_r)} = 0$.

Then relations (3.8) and

(3.10)
$$\ell_k^{(r)}(x_k) = \frac{\omega_n^{(r+1)}(x_k)}{(r+1)\omega_n'(x_k)}, \quad 1 \le k \le n \quad r = 0, 1, 2, \dots$$

(cf. [3]) applying for r=t=m-1 yield that $\omega_n^{(m)}(x_k)=0$, $|x_k|<1$. By $m\geq 4$ we obtain that the polynomial $\omega_n^{(m)}(x)$ of degree $n-m\leq n-4$ has n-2 zeros at least, whence $\omega_n(x)\equiv 0$.

References

[1] Vértesi P., On ρ-normal pointsystems: a survey, IDOMAT Conference in Dortmund, 1995 (to appear).

- [2] Szegő G., Orthogonal polynomials, 4th ed., AMS Coll. Publ. Vol. 23, Providence, R.I., 1974.
- [3] Vértesi P., Hermite-Fejér interpolation of higher order I., Acta Math. Hungar., 54 (1989), 135-152.
- [4] Vértesi P., Practically ρ -normal pointsystems, Acta Math. Hungar., 67 (1995), 237-251.

B. Háy MTA SZTAKI XI. Lágymányosi u. 11. H-1111 Budapest, Hungary

L. Pasquini L'Aquila University L'Aquila, Italy

P. Vértesi

Mathematical Institute of the Hungarian Academy of Sciences H-1364 Budapest P.O.B. 127 Hungary