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INEQUALITIES FOR STOPPED RANDOM WALKS

N.L. Bassily (Cairo, Egypt)

Dedicated to Professor János Balázs on his 75-th birthday

Abstract. Consider the stopped partial sums of i.i.d. random variables

Y1, Y2, . . . with the stopping time ν. Gut and Janson (1986) have inves-

tigated the effect of the conditions E(|Sν |p) < +∞ and E(νp) < +∞
and proved that in this case E(|Y1|p) < +∞. Also, they have shown

that if E(|Sν |p) < +∞ and E(|Y1|p) < +∞ then necessarily E(νp) <
< +∞ provided that E(Y1) 6= 0. Here p ≥ 1 is a power. We consider

the quantities A
(p)
1 =sup

n≥1
E(|Sν∧n|p), and A

(p)
2 = E

(
sup
n≥1

|Sν∧n|p
)

.

In this paper two other systems of conditions are investigated. Namely,

if A
(p)
1 is finite and if E(Y1) 6= 0, then necessarily E(νp) < +∞. Also, we

prove that if E(|Y1|p) and E(νp) are finite then the same holds for A
(p)
2 .

Moreover, the case when a = E(Y1) = 0 is also treated. Some extensions

and improvements of results obtained by Chow and Teicher (1978) and of

Klass (1988) concerning A
(p)
2 are obtained.

1. Introduction and summary

Let Y1, Y2, . . . be i.i.d. random variables. Consider the σ-fields Fn =
= σ(Y1, . . . , Yn), n ≥ 1. Let also ν be a stopping time adapted to the sequence
{Fn}∞n=1 of σ-fields. Consider the generalized random walk S0 = 0, Sn =
= Y1 + . . . + Yn, n = 1, 2, . . ., and the corresponding stopped random walks
S0 = 0, Sν∧n, n = 1, 2, . . ..
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If ν is finite with probability 1 then the limit lim
n→∞

Sν∧n = Sν exists and is

finite a.s. except on the event {ν = +∞}, where Sν is not defined. We define
Sν = 0 on this event which has probability zero by assumption. Therefore Sν

has the form

Sν =
∞∑

i=1

SiI(ν = i) =
∞∑

i=1

Yi(+∞ > ν ≥ i),

where I(A) stands for the indicator of event A.

The sequence Sν∧n is of the form

Sν∧n =
n∑

i=1

SiI(ν = i) + SnI(ν > n) =
n∑

i=1

YiI(+∞ > ν ≥ i).

Throughout this paper we suppose that P (ν < +∞) = 1.

Gut and Janson proved the following assertions. Let p ≥ 1.

a) If E(|Sν |p) < +∞, E(|Y1|p) < +∞, then so is E(νp) < ∞, provided
that a = E(Y1) 6= 0 (generalization of Blackwell’s theorem (1953)).

b) If E(|Sν |p) < +∞ and E(νp) < +∞ then necessarily E(|Y1|p) < +∞.
If E(|Sν |p) = +∞, E(Y1) = 0 and E(ν) < +∞ then E(|Y1|p) < +∞.

In the light of results of the present paper the following three conditions
are equivalent:

1) E(|Y1|p) < +∞, E(νp) < +∞ and E(Y1) 6= 0;

2) E(|Y1|p) < +∞, E(|Sν |p) < +∞ and E(Y1) 6= 0;

3) E(|Sν |p) < +∞, E(νp) < +∞.

Any of them implies that A
(p)
2 < +∞ and yet more, namely we have

A
(p)
3 = E

(( ∞∑

i=1

|Yi|I(+∞ > ν ≥ i)

)p)
< ∞.

2. Standard extensions of Gut and Janson results

In this direction we prove the following result.
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Theorem 1. For p ≥ 1 we have

(i) A
(p)
1 < +∞, E(Y1) = a 6= 0 =⇒ E(νp) < +∞,

(ii) E(νp) < +∞, E(|Y1|p) < +∞ =⇒ A
(p)
2 < +∞.

Proof. Consider first the case p = 1.

Suppose that A
(1)
1 =sup

n≥1
E(|Sν∧n|) < +∞ (which implies trivially that

E(|Y1|) < ∞). Then for every n we have

|E(Sν∧n)| ≤ E(|Sν∧n|) ≤ A
(1)
1 < +∞.

Since E(Sν∧n) = aE(ν ∧ n) it follows that

|a|E(ν ∧ n) ≤ A
(1)
1 < +∞.

Letting n → +∞ and noting that a 6= 0 we get |a|E(ν) ≤ A
(1)
1 < +∞, which

implies the finiteness of E(ν).

Now suppose that E(|Y1|) < +∞ and E(ν) < +∞. Since

sup
n≥1

|Sν∧n| ≤
∞∑

i=1

|Yi|I(ν ≥ i),

and using Wald’s identity it follows that

A
(1)
2 = E

(
sup
n≥1

|Sν∧n|
)
≤ E(|Y1|)E(ν) < +∞.

Remarks. (1) The conditions A
(1)
2 < +∞ and A

(1)
1 < +∞ are equivalent

provided that a 6= 0.

(2) Note that E(|Sν |) < +∞ if A
(1)
2 < +∞. The finiteness of E(Sν) does

not imply in general neither that of E(Y1) nor that of E(ν). Counterexamples
can be constructed in an obvious way (cf. Gut and Janson (1986)).

For 1 < p ≤ 2 we have:
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Suppose A
(p)
1 < +∞. Then trivially E(|Y1|p) < +∞. If, in addition a =

= E(Y1) > 0, then by what we have proved, we have E(ν) < +∞. Consider the
Doob decomposition of the submartingale (Sν∧n,Fn). Then the corresponding
martingale is

(Sν∧n − a(ν ∧ n),Fn).

By the Burkholder-Davis-Gundy inequality (cf. Burkholder (1973))

E

(
sup
n≥1

|Sν∧n − a(ν ∧ n)|p
)
≤ CpE

( ∞∑

i=1

(Yi − a)2I(+∞ > ν ≥ i)

)p/2

,

where Cp > 0 is a constant depending only on p. Since p/2 ≤ 1 and as an
application to Wald’s identity it follows that

E

(
sup
n≥1

|Sν∧n − a(ν ∧ n)|p
)
≤ CpE (|Y1 − a|p) E(ν) < +∞.

Here we used the independence of Yi − a and I(ν ≥ i). Now, by the Cp-
inequality,

apE ((ν ∧ n)p) ≤ 2p−1

{
E

(
sup
n≥1

|Sν∧n − a(ν ∧ n)|p
)

+ E (|Sν∧n|p)
}

,

and letting n → +∞ we get

apE (νp) ≤ 2p−1{CpE(|Y1 − a|p)E(ν)+ sup
n≥1

E(|Sν∧n|p)}.

Since a > 0 we can see that E(νp) < +∞. We proceed similarly when a < 0.
Suppose now that E(|Y1|p) < +∞ and E(νp) < +∞. Then again by the
Cp-inequality

sup
n≥1

|Sν∧n|p ≤ 2p−1

{
sup
n≥1

|Sν∧n − a(ν ∧ n)|p + apνp

}
.

By what we have proved above, we have

A
(p)
2 =

= E

(
sup
n≥1

|Sν∧n|p
)
≤ 2p−1

{
E

(
sup
n≥1

|Sν∧n − a(ν ∧ n)|p
)

+ apE(νp)
}

< +∞.
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The obtained estimation holds also in case a = 0. This proves the assertion by
noting that in case a < 0 we consider the stopped random walk (−Sν∧n,Fn).

Finally, for p ≥ 2, we have:

If A
(p)
1 < +∞, then trivially E(|Y1|p) < +∞. Suppose in addition that

a = E(Y1) 6= 0. It follows that for 1 ≤ r ≤ 2 E(|Y1|r) and A
(r)
1 are finite. Let k

be the smallest positive integer for which 1 ≤ p2−k ≤ 2 and denote r = p2−k.
Then, by what we proved, it follows that E(νp2−k

) < +∞. Since p2−k+1 ≥ 2,
it follows from Theorem 1 of Bassily, Ishak and Mogyoródi (1987) that

E

(
sup
n≥1

|Sν∧n − a(ν ∧ n)|p2−k+1
)

< +∞,

since E(|Y1|p2−k+1
) < +∞ and E(νp2−k

) < +∞ provided that p2−k+1 ≤ p.
From this by the Cp-inequality we have

ap2−k+1
E(νp2−k+1

) ≤

≤ 2p2−k+1−1

{
E

(
sup
n≥1

|Sν∧n − a(ν ∧ n)|p2−k+1
)

+ sup
n≥1

(
|Sν∧n|p2−k+1

)}
< +∞.

This implies the finiteness of E(νp2−k+1
). If p2−k+1 ≤ p and since E(νp2−k+1

)
and E(|Y1|p2−k+2

) being finite, we have

E

(
sup
n≥1

|Sν∧n − a(ν ∧ n)|p2−k+2
)

< +∞.

From this by the same manner we deduce the finiteness of

E
(
νp2−k+2

)
.

Following this procedure step by step we finally arrive at the finiteness of E(νp).

Now suppose that E(|Y1|p) and E(νp) are finite. Again, by the Cp-
inequality we have

A
(p)
2 = E

(
sup
n≥1

|Sν∧n|p
)
≤ 2p−1

{
E

(
sup
n≥1

|Sν∧n − a(ν ∧ n)|p
)

+ |a|pE(νp)
}

and the first term on the right hand side is also finite since E(|Y1|p) and E(νp/2)
are finite, cf. Theorem 1 of Bassily, Ishak and Mogyoródi (1987). This means
that A

(p)
2 < +∞. This proves the assertion.



36 N.L. Bassily

Now let us introduce the quantity A
(p)
3 = E

(( ∞∑
i=1

|Yi|I(+∞ > ν ≥ i)
)p)

.

The following result is also true.

Theorem 2. Let p ≥ 1. Then the condition

A
(p)
2 < +∞ whenever a = E(Y1) 6= 0 =⇒ A

(p)
3 < +∞.

Conversely, if this last holds, then A
(p)
2 < +∞.

Thus, all the results that are true for A
(p)
2 are automatically true for A

(p)
3

and vice versa.

3. Convergence in L1 of the stopped random walk

In this section we consider the convergence in L1 of the stopped random
walk {Sν∧n}. We shall see that the same conditions are necessary to ensure
that sup

n≥1
|Sν∧n| belong to L1.

Theorem 3. Let {Sν∧n} be a stopped random walk and suppose that
E(Sν) is finite. If Sν∧n converges in L1 (to Sν) then necessarily a = E(Y1)
is finite. Moreover, A

(1)
1 =sup

n≥1
E(|Sν∧n|) < +∞. If, in addition, a 6= 0, then

E(ν) is also finite.

Remark. The finiteness of E(Sν) does not imply in general neither that
of a = E(Y1) nor that of E(ν) (cf. Gut and Janson (1986)).

Proof. If lim
n→+∞

E(|Sν − Sν∧n|) = 0, then there exists an index, say n0,

such that for n ≥ n0 we have E(|Sν − Sν∧n|) < +∞, which implies

E(|Sν∧n|) ≤ E(|Sν − Sν∧n|) + E(|Sν |) < +∞,

since by assumption E(|Sν |) < +∞. From this

E(|Sν∧(n+1) − Sν∧n|) = E(|Yn+1I(ν ≥ n + 1)|) < +∞.

Yn+1 and I(ν ≥ n + 1) being independent we can see that

E(|Yn+1|)P (ν ≥ n + 1) < +∞.
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If P (ν ≥ n + 1) > 0 this means that E(|Y1|) = E(|Yn+1|) < +∞. If P (ν ≥ n+
+1) = 0 then ν is bounded a.s. and P (ν ≤ k) = 1, where k is the largest positive
integer such that P (ν = k) > 0. Now let us show that YkI(ν = k) = YkI(ν ≥ k)
is of finite expectation. In fact, the random vector

(
k−1∑

i=1

YiI(ν ≥ i), I(ν = k)

)

and the random variable Yk are independent. From it follows that

E(Sν) = E

(
k−1∑

i=1

Yi(ν ≥ i) + YkI(ν = k)

)
=

= E

(
k−1∑

i=1

YiI(ν ≥ i) + YkI(ν ≥ k)

)
=

∫

R

∫

R2

(x + yz)dQ(y)dQ′(x, z)

is finite, where Q denotes the distribution of the Yi’s, whilst Q′ is the joint
distribution of the vector

(
k−1∑

i=1

YiI(ν ≥ i), I(ν = k)

)
.

Since E(|Sν |) < +∞ by Fubini’s theorem we have for Q′-almost all (x, z) the
integral ∫

R

(x + yz)dQ(y) = x + z

∫

R

ydQ(y)

is finite. Since P (ν = k) > 0, z can be taken to be different from 0. This means
that

∫
R

ydQ(y) = E(Yk) = E(Y1) = a is finite.

Now let us show that A
(1)
1 < +∞. In fact, the random variables Zn =

=
n∑

i=1

SiI(ν = i) converge in L1 to Sν . Further

∣∣∣∣∣Sν −
n∑

i=1

SiI(ν = i)

∣∣∣∣∣ =
∞∑

i=n+1

|Si|I(ν = i)
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and the right hand side tends decreasingly to 0 as n → +∞. By the monotone
convergence theorem and by the integrability of |Sν | it follows that

E

(∣∣∣∣∣Sν −
n∑

i=1

SiI(ν = i)

∣∣∣∣∣

)
↓ 0

as n → +∞. Since by our assumption Sν∧n → Sν in L1, we deduce the limit
relation

lim
n→+∞

E(|Sn|I(ν > n)) = 0,

and we have
|Sn|I(ν > n) = |Sν∧n| − |Sν |I(ν ≤ n).

Integrating both sides of this relatiion and noting that

E(|Sν |I(ν ≤ n)) → E(|Sν |),

we get
lim

n→+∞
E(|Sν∧n|) = E(|Sν |) < +∞.

Each term of the sequence is finite since

E(Sν∧n) = aE(ν ∧ n).

This means that
A

(1)
1 =sup

n≥1
E(|Sν∧n|) < +∞.

Finally, if a = E(Y1) 6= 0 then by Theorem 1 the last relation implies that E(ν)
is finite.

This proves the assertion.

4. The case a = E(Y1) = 0

It is of interest to give an upper estimate for the random variable
sup
n≥1

|Sν∧n|p, where a = E(Y1) = 0. Below we generalize a result of Chow,

Robbins and Siegmund (1971) and of Chow and Teicher (1978) by obtaining
an estimate for A

(p)
2 in terms of some moments of Y1 and of ν, where p is a
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power such that 1 ≤ p ≤ 2. Our method of proof is different and leads to
explicit upper bound (cf. Ishak (1992)).

Theorem 4. Let a = E(Y1) = 0 and 1 ≤ p ≤ q ≤ 2. If E(|Y1|q) and
E(νp/q) are finite then

A
(p)
2 ≤ Cp(p/2)−p/2E(|Y1|q)E(νp/q),

where Cp is a constant depending only on p.

Proof. By using the Burkholder-Davis-Gundy inequality we have

A
(p)
2 ≤ CpE





[ ∞∑

i=1

Y 2
i I(ν ≥ i)

]p/2


 = CpE





[ ∞∑

i=1

Y 2
i I(ν ≥ i)

]q/2




p/q

,

where Cp > 0 is a constant depending only on p, and here q/2 ≤ 1 and p/q ≤ 1.
The following is true

E

{ ∞∑

i=1

Y 2
i I(ν ≥ i)

}p/2

≤ E

{ ∞∑

i=1

|Yi|qI(ν ≥ i)

}p/q

.

By using the concavity lemma (cf. Burkholder (1973) and Mogyoródi (1981))
we have

E

{ ∞∑

i=1

Y 2
i I(ν ≥ i)

}p/2

≤ (p/2)−p/2E

{ ∞∑

i=1

E [|Yi|qI(ν ≥ i) | Fi−1]

}p/q

=

= (p/2)−p/2E



[E(|Yi|q]p/q ·

[ ∞∑

i=1

I(ν ≥ i)

]p/q


 =

= (p/2)−p/2[E(|Y1|q)]p/q · E(νp/q).

Here we have used the fact that Yi and Fi−1 are independent and I(ν ≥ i) is
Fi−1-measurable. This proves our assertion.

As an easy consequence we formulate now the following

Corollary 1. Let a = 0 and 1 ≤ p ≤ q ≤ 2. If E(|Y1|q) and E(νp/q) are
finite, then

E(|Sν |p) ≤ Cp(p/2)−p/2E(|Y1|q)E(νp/q).
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Proof. By the preceding theorem the conditions imply that

A
(p)
1 < +∞.

Consequently, Sν∧n → Sν in Lp and a.s. From this

E

(
lim

n→+∞
|Sν∧n|p

)
= E(|Sν |p) ≤

≤ E

(
sup
n≥1

|Sν∧n|p
)
≤ Cp(p/2)−p/2E(|Y1|q)E(νp/q).

This proves the corollary.

On the basis of the preceding theorem the result of Chow and Teicher
(1978) follows as a special case.

Corollary 2. If for some p, where 1 ≤ p ≤ 2, E(|Y1|p) and E(ν1/p) are
finite, then A

(p)
2 < +∞.

Now we consider the case p ≥ 2. It was proved by Burkholder (1973) and
Mogyoródi (1977) that

(1) cp

{
E(sp) +

∞∑

i=1

E(|di|p)
}
≤ E(X∗p) ≤ Cp

{
E(sp) +

∞∑

i=1

E(|di|p)
}

,

where cp and Cp are positive constants depending only on p, and

s = s(X) =

( ∞∑

i=1

E(d2
i |Fi−1|)

) 1
2

is the so-called conditional quadratic variation of a square integrable martingale
(Xn,Fn) with difference sequence do = 0, di = Xi − Xi−1, i ≥ 1 and with
X∗ =sup

n≥1
|Xn| is the corresponding maximal function.

To provide additional perspective we formulate the following results with-
out proof specialized to the present situation with the martingale differences
d0 = 0 = S0 and di = YiI(+∞ > ν ≥ i). These results are immediate
consequences of conditional version of Rosenthal’s inequality (1).

Theorem 5. For p ≥ 2 the moment A
(p)
2 < +∞ if and only if E(|Y1|p)

and E(νp/2) are finite. In this case we have the inequality

cp

{
σpE(νp/2) + E(|Y1|p)E(ν)

}
≤ A

(p)
2 ≤ Cp

{
σpE(νp/2) + E(|Y1|p)E(ν)

}
.
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Here cp > 0 and Cp > 0 are constants depending only on p and σ2 denotes the
variance of Y1.

Further, if E(|Y1|p) and E(νp/2) are finite then

cp

(
p

p− 1

)−p

[σ2E(νp/2) + E(|Y1|p)E(ν)] ≤

≤ E(|Sν |p) ≤ Cp[σpE(νp/2) + E(|Y1|p) · E(ν)].

The results of this theorem show that the random variable Sν belongs to the
Hardy space Hp if and only if E(|Y1|p) and E(νp/2) are finite.

Recently, M.Klass (1988) proved that in case E(Y1) = 0 and for a power
p ≥ 1 we have A

(p)
2 ≤ CE(a∗ν), which by uniform integrability implies the

validity of Wald’s equation. Here a∗n = E

(
max

1≤k≤n
|Sk|p

)
and C > 0 is a

constant depending only on p.
This result was refined and sharpened in the form of two-sided inequality,

cf. Bassily (1991). For the sake of completeness of this work and to provide
an additional perspective concerning A

(p)
2 we formulate this result with a very

compact proof.

Theorem 6. For p ≥ 1 we have

cE(|Sν |p) ≤ A
(p)
2 ≤ CE(|Sν |p),

where in the case 1 ≤ p ≤ 2 we also suppose that σ2 = E(Y 2
1 ) is finite (and = 1).

Here c > 0 and C > 0 are two constants depending only on the distribution of
Y1 and on p and are independent of the choice of ν.

Proof. The idea of the proof is mainly based on the following inequalities:

a) If p ≥ 2 then

cp

[
σpE(νp/2) + E(|Y1|p)E(ν)

]
≤ A

(p)
2 ≤ Cp

[
σ2E(νp/2) + E(|Y1|p)E(ν)

]
,

where cp > 0 and Cp are constants depending only on p. It is clear that the
left and right-hand sides are finite if and only if so are E(|Y1|p) and E(νp/2),
cf. Bassily, Ishak and Mogyoródi (1987). This inequality can be written in the
following form

(2) cpσ
pE(νp/2) ≤ A

(p)
2 ≤ 2CpE(|Y1|p)E(νp/2).
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b) For 1 ≤ p ≤ 2 Burkholder and Gundy (1970) have proved the following
two-sided inequality: if σ2 = 1 then

(3) cp,dE(νp/2) ≤ A
(p)
2 ≤ CpE(νp/2),

where Cp > 0 is a constant depending only on p whilst cp,d > 0 is such a
constant which depends not only on p, but also on d = E(|Y1|).

c) By using the Marcinkiewicz-Zygmund inequality ((1937) and (1938))
one can easily prove that for p ≥ 2 supposing E(|Y1|p) < +∞ for every n = 1,
2, 3, . . . we have

(4) c(1)
p σpnp/2 ≤ E(|Sn|p) ≤ C(1)

p E(|Y1|p)np/2,

where c
(1)
p > 0 and C

(1)
p > 0 are constants depending only on p.

If 1 ≤ p ≤ 2 and σ2 = E(Y 2
1 ) is finite then

(5) E(|Sn|p) ≤ C(1)
p σpnp/2, n = 1, 2, . . .

From (4) and (5) we have for all p ≥ 1 that

(6) E(|Sν |p) ≤ KE(νp/2)

holds with some K > 0 depending only on p and the distribution of Y1, and
is independent of the choice of ν. Applying (6) to the left-hand side of (2) in
case p ≥ 2 and to the left-hand side of (3) in case 1 ≤ p ≤ 2 we have with some
constant c > 0 that

(∗) cE(|Sν |p) ≤ A
(p)
2 , p ≥ 1.

For p ≥ 2 by using the inequality (4) it is clear that

(7) E(νp/2) ≤ K1E(|Sν |p)

holds with the K1 =
1

c
(1)
p

σ−p positive constant. Applying (7) to the right-hand

side of (2) we have with a positive constant K2 = 2Cp
1

c
(1)
p

σ−pE(|Y1|p), which

does not depend on the choice of ν, that

(8) A
(p)
2 ≤ K2E(|Sν |p), p ≥ 2.



Inequalities for stopped random walks 43

Also, for 1 ≤ p ≤ 2, by using the Burkholder-Davis-Gundy and the Marcinkie-
wicz-Zygmund inequality one can prove that

(9) A
(p)
2 ≤ 4

Cp

c
(1)
p

E(|Sν |p), 1 ≤ p ≤ 2.

Making use of (8) and (9), we have with C > 0 that

(∗∗) A
(p)
2 ≤ CE(|Sν |p), p ≥ 1.

Now, employing (*) and (**), we have for p ≥ 1 that

cE(|Sν |p) ≤ A
(p)
2 ≤ CE(|Sν |p).

Here c > 0 and C > 0 are two contants depending only on p and on
the distribution of Y1 and are independent of the choice of ν provided that
E(|Y1|p) < +∞ if p ≥ 2, and σ2 < +∞ (and = 1) if 1 ≤ p ≤ 2. This proves
our assertion.
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fonctions indépendantes, Studia Math., 7 (1938), 104-120.
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