INEQUALITIES FOR STOPPED RANDOM WALKS

N.L. Bassily (Cairo, Egypt)

Dedicated to Professor János Balázs on his 75-th birthday

Abstract. Consider the stopped partial sums of i.i.d. random variables Y_1, Y_2, \ldots with the stopping time ν . Gut and Janson (1986) have investigated the effect of the conditions $E(|S_{\nu}|^p) < +\infty$ and $E(\nu^p) < +\infty$ and $proved that in this case <math>E(|Y_1|^p) < +\infty$. Also, they have shown that if $E(|S_{\nu}|^p) < +\infty$ and $E(|Y_1|^p) < +\infty$ then necessarily $E(\nu^p) < +\infty +\infty$ provided that $E(Y_1) \neq 0$. Here $p \geq 1$ is a power. We consider the quantities $A_1^{(p)} = \sup_{n\geq 1} E(|S_{\nu\wedge n}|^p)$, and $A_2^{(p)} = E\left(\sup_{n\geq 1} |S_{\nu\wedge n}|^p\right)$. In this paper two other systems of conditions are investigated. Namely, if $A_1^{(p)}$ is finite and if $E(Y_1) \neq 0$, then necessarily $E(\nu^p) < +\infty$. Also, we prove that if $E(|Y_1|^p)$ and $E(\nu^p)$ are finite then the same holds for $A_2^{(p)}$. Moreover, the case when $a = E(Y_1) = 0$ is also treated. Some extensions and improvements of results obtained by Chow and Teicher (1978) and of Klass (1988) concerning $A_2^{(p)}$ are obtained.

1. Introduction and summary

Let Y_1, Y_2, \ldots be i.i.d. random variables. Consider the σ -fields $\mathcal{F}_n = \sigma(Y_1, \ldots, Y_n), n \ge 1$. Let also ν be a stopping time adapted to the sequence $\{\mathcal{F}_n\}_{n=1}^{\infty}$ of σ -fields. Consider the generalized random walk $S_0 = 0, S_n = Y_1 + \ldots + Y_n, n = 1, 2, \ldots$, and the corresponding stopped random walks $S_0 = 0, S_{\nu \land n}, n = 1, 2, \ldots$

If ν is finite with probability 1 then the limit $\lim_{n\to\infty} S_{\nu\wedge n} = S_{\nu}$ exists and is finite a.s. except on the event $\{\nu = +\infty\}$, where S_{ν} is not defined. We define $S_{\nu} = 0$ on this event which has probability zero by assumption. Therefore S_{ν} has the form

$$S_{\nu} = \sum_{i=1}^{\infty} S_i I(\nu = i) = \sum_{i=1}^{\infty} Y_i(+\infty > \nu \ge i),$$

where I(A) stands for the indicator of event A.

The sequence $S_{\nu \wedge n}$ is of the form

$$S_{\nu \wedge n} = \sum_{i=1}^{n} S_i I(\nu = i) + S_n I(\nu > n) = \sum_{i=1}^{n} Y_i I(+\infty > \nu \ge i).$$

Throughout this paper we suppose that $P(\nu < +\infty) = 1$.

Gut and Janson proved the following assertions. Let $p \ge 1$.

a) If $E(|S_{\nu}|^p) < +\infty$, $E(|Y_1|^p) < +\infty$, then so is $E(\nu^p) < \infty$, provided that $a = E(Y_1) \neq 0$ (generalization of Blackwell's theorem (1953)).

b) If $E(|S_{\nu}|^{p}) < +\infty$ and $E(\nu^{p}) < +\infty$ then necessarily $E(|Y_{1}|^{p}) < +\infty$. If $E(|S_{\nu}|^{p}) = +\infty$, $E(Y_{1}) = 0$ and $E(\nu) < +\infty$ then $E(|Y_{1}|^{p}) < +\infty$.

In the light of results of the present paper the following three conditions are equivalent:

1)
$$E(|Y_1|^p) < +\infty$$
, $E(\nu^p) < +\infty$ and $E(Y_1) \neq 0$;
2) $E(|Y_1|^p) < +\infty$, $E(|S_{\nu}|^p) < +\infty$ and $E(Y_1) \neq 0$;
3) $E(|S_{\nu}|^p) < +\infty$, $E(\nu^p) < +\infty$.

Any of them implies that $A_2^{(p)} < +\infty$ and yet more, namely we have

$$A_3^{(p)} = E\left(\left(\sum_{i=1}^{\infty} |Y_i| I(+\infty > \nu \ge i)\right)^p\right) < \infty.$$

2. Standard extensions of Gut and Janson results

In this direction we prove the following result.

Theorem 1. For $p \ge 1$ we have

(i)
$$A_1^{(p)} < +\infty, \quad E(Y_1) = a \neq 0 \implies E(\nu^p) < +\infty,$$

(*ii*)
$$E(\nu^p) < +\infty, \quad E(|Y_1|^p) < +\infty \implies A_2^{(p)} < +\infty.$$

Proof. Consider first the case p = 1.

Suppose that $A_1^{(1)} = \sup_{n \ge 1} E(|S_{\nu \land n}|) < +\infty$ (which implies trivially that $E(|Y_1|) < \infty$). Then for every *n* we have

$$|E(S_{\nu \wedge n})| \le E(|S_{\nu \wedge n}|) \le A_1^{(1)} < +\infty.$$

Since $E(S_{\nu \wedge n}) = aE(\nu \wedge n)$ it follows that

$$|a|E(\nu \wedge n) \le A_1^{(1)} < +\infty.$$

Letting $n \to +\infty$ and noting that $a \neq 0$ we get $|a|E(\nu) \leq A_1^{(1)} < +\infty$, which implies the finiteness of $E(\nu)$.

Now suppose that $E(|Y_1|) < +\infty$ and $E(\nu) < +\infty$. Since

$$\sup_{n\geq 1} |S_{\nu\wedge n}| \leq \sum_{i=1}^{\infty} |Y_i| I(\nu \geq i),$$

and using Wald's identity it follows that

$$A_2^{(1)} = E\left(\sup_{n\geq 1} |S_{\nu\wedge n}|\right) \leq E(|Y_1|)E(\nu) < +\infty.$$

Remarks. (1) The conditions $A_2^{(1)} < +\infty$ and $A_1^{(1)} < +\infty$ are equivalent provided that $a \neq 0$.

(2) Note that $E(|S_{\nu}|) < +\infty$ if $A_2^{(1)} < +\infty$. The finiteness of $E(S_{\nu})$ does not imply in general neither that of $E(Y_1)$ nor that of $E(\nu)$. Counterexamples can be constructed in an obvious way (cf. Gut and Janson (1986)).

For 1 we have:

Suppose $A_1^{(p)} < +\infty$. Then trivially $E(|Y_1|^p) < +\infty$. If, in addition $a = E(Y_1) > 0$, then by what we have proved, we have $E(\nu) < +\infty$. Consider the Doob decomposition of the submartingale $(S_{\nu \wedge n}, \mathcal{F}_n)$. Then the corresponding martingale is

$$(S_{\nu\wedge n}-a(\nu\wedge n),\mathcal{F}_n).$$

By the Burkholder-Davis-Gundy inequality (cf. Burkholder (1973))

$$E\left(\sup_{n\geq 1}|S_{\nu\wedge n}-a(\nu\wedge n)|^p\right)\leq C_pE\left(\sum_{i=1}^{\infty}(Y_i-a)^2I(+\infty>\nu\geq i)\right)^{p/2},$$

where $C_p > 0$ is a constant depending only on p. Since $p/2 \leq 1$ and as an application to Wald's identity it follows that

$$E\left(\sup_{n\geq 1}|S_{\nu\wedge n}-a(\nu\wedge n)|^p\right)\leq C_pE\left(|Y_1-a|^p\right)E(\nu)<+\infty$$

Here we used the independence of $Y_i - a$ and $I(\nu \ge i)$. Now, by the C_p -inequality,

$$a^{p}E\left((\nu \wedge n)^{p}\right) \leq 2^{p-1} \left\{ E\left(\sup_{n \geq 1} |S_{\nu \wedge n} - a(\nu \wedge n)|^{p}\right) + E\left(|S_{\nu \wedge n}|^{p}\right) \right\},\$$

and letting $n \to +\infty$ we get

$$a^{p}E(\nu^{p}) \leq 2^{p-1} \{ C_{p}E(|Y_{1}-a|^{p})E(\nu) + \sup_{n\geq 1} E(|S_{\nu\wedge n}|^{p}) \}.$$

Since a > 0 we can see that $E(\nu^p) < +\infty$. We proceed similarly when a < 0. Suppose now that $E(|Y_1|^p) < +\infty$ and $E(\nu^p) < +\infty$. Then again by the C_p -inequality

$$\sup_{n \ge 1} |S_{\nu \wedge n}|^p \le 2^{p-1} \left\{ \sup_{n \ge 1} |S_{\nu \wedge n} - a(\nu \wedge n)|^p + a^p \nu^p \right\}.$$

By what we have proved above, we have

$$A_{2}^{(p)} =$$

$$= E\left(\sup_{n\geq 1}|S_{\nu\wedge n}|^p\right) \leq 2^{p-1}\left\{E\left(\sup_{n\geq 1}|S_{\nu\wedge n} - a(\nu\wedge n)|^p\right) + a^p E(\nu^p)\right\} < +\infty.$$

The obtained estimation holds also in case a = 0. This proves the assertion by noting that in case a < 0 we consider the stopped random walk $(-S_{\nu \wedge n}, \mathcal{F}_n)$.

Finally, for $p \ge 2$, we have:

If $A_1^{(p)} < +\infty$, then trivially $E(|Y_1|^p) < +\infty$. Suppose in addition that $a = E(Y_1) \neq 0$. It follows that for $1 \leq r \leq 2 E(|Y_1|^r)$ and $A_1^{(r)}$ are finite. Let k be the smallest positive integer for which $1 \leq p2^{-k} \leq 2$ and denote $r = p2^{-k}$. Then, by what we proved, it follows that $E(\nu^{p2^{-k}}) < +\infty$. Since $p2^{-k+1} \geq 2$, it follows from Theorem 1 of Bassily, Ishak and Mogyoródi (1987) that

$$E\left(\sup_{n\geq 1}|S_{\nu\wedge n}-a(\nu\wedge n)|^{p2^{-k+1}}\right)<+\infty$$

since $E(|Y_1|^{p2^{-k+1}}) < +\infty$ and $E(\nu^{p2^{-k}}) < +\infty$ provided that $p2^{-k+1} \leq p$. From this by the C_p -inequality we have

$$a^{p2^{-k+1}}E(\nu^{p2^{-k+1}}) \le$$

$$\leq 2^{p2^{-k+1}-1} \left\{ E \left(\sup_{n \geq 1} |S_{\nu \wedge n} - a(\nu \wedge n)|^{p2^{-k+1}} \right) + \sup_{n \geq 1} \left(|S_{\nu \wedge n}|^{p2^{-k+1}} \right) \right\} < +\infty.$$

This implies the finiteness of $E(\nu^{p2^{-k+1}})$. If $p2^{-k+1} \leq p$ and since $E(\nu^{p2^{-k+1}})$ and $E(|Y_1|^{p2^{-k+2}})$ being finite, we have

$$E\left(\sup_{n\geq 1}|S_{\nu\wedge n}-a(\nu\wedge n)|^{p2^{-k+2}}\right)<+\infty.$$

From this by the same manner we deduce the finiteness of

$$E\left(\nu^{p2^{-k+2}}\right).$$

Following this procedure step by step we finally arrive at the finiteness of $E(\nu^p)$.

Now suppose that $E(|Y_1|^p)$ and $E(\nu^p)$ are finite. Again, by the C_p -inequality we have

$$A_{2}^{(p)} = E\left(\sup_{n\geq 1}|S_{\nu\wedge n}|^{p}\right) \leq 2^{p-1}\left\{E\left(\sup_{n\geq 1}|S_{\nu\wedge n} - a(\nu\wedge n)|^{p}\right) + |a|^{p}E(\nu^{p})\right\}$$

and the first term on the right hand side is also finite since $E(|Y_1|^p)$ and $E(\nu^{p/2})$ are finite, cf. Theorem 1 of Bassily, Ishak and Mogyoródi (1987). This means that $A_2^{(p)} < +\infty$. This proves the assertion.

Now let us introduce the quantity $A_3^{(p)} = E\left(\left(\sum_{i=1}^{\infty} |Y_i| I(+\infty > \nu \ge i)\right)^p\right).$ The following result is also true.

Theorem 2. Let $p \ge 1$. Then the condition

$$A_2^{(p)} < +\infty$$
 whenever $a = E(Y_1) \neq 0 \implies A_3^{(p)} < +\infty.$

Conversely, if this last holds, then $A_2^{(p)} < +\infty$.

Thus, all the results that are true for $A_2^{(p)}$ are automatically true for $A_3^{(p)}$ and vice versa.

3. Convergence in L_1 of the stopped random walk

In this section we consider the convergence in L_1 of the stopped random walk $\{S_{\nu \wedge n}\}$. We shall see that the same conditions are necessary to ensure that $\sup_{n\geq 1} |S_{\nu\wedge n}|$ belong to L_1 .

Theorem 3. Let $\{S_{\nu \wedge n}\}$ be a stopped random walk and suppose that $E(S_{\nu})$ is finite. If $S_{\nu \wedge n}$ converges in L_1 (to S_{ν}) then necessarily $a = E(Y_1)$ is finite. Moreover, $A_1^{(1)} = \sup_{n \ge 1} E(|S_{\nu \wedge n}|) < +\infty$. If, in addition, $a \ne 0$, then $E(\nu)$ is also finite.

Remark. The finiteness of $E(S_{\nu})$ does not imply in general neither that of $a = E(Y_1)$ nor that of $E(\nu)$ (cf. Gut and Janson (1986)).

Proof. If $\lim_{n \to +\infty} E(|S_{\nu} - S_{\nu \wedge n}|) = 0$, then there exists an index, say n_0 , such that for $n \ge n_0$ we have $E(|S_{\nu} - S_{\nu \land n}|) < +\infty$, which implies

$$E(|S_{\nu \wedge n}|) \le E(|S_{\nu} - S_{\nu \wedge n}|) + E(|S_{\nu}|) < +\infty,$$

since by assumption $E(|S_{\nu}|) < +\infty$. From this

$$E(|S_{\nu \wedge (n+1)} - S_{\nu \wedge n}|) = E(|Y_{n+1}I(\nu \ge n+1)|) < +\infty.$$

 Y_{n+1} and $I(\nu \ge n+1)$ being independent we can see that

$$E(|Y_{n+1}|)P(\nu \ge n+1) < +\infty.$$

If $P(\nu \ge n+1) > 0$ this means that $E(|Y_1|) = E(|Y_{n+1}|) < +\infty$. If $P(\nu \ge n+1) = 0$ then ν is bounded a.s. and $P(\nu \le k) = 1$, where k is the largest positive integer such that $P(\nu = k) > 0$. Now let us show that $Y_k I(\nu = k) = Y_k I(\nu \ge k)$ is of finite expectation. In fact, the random vector

$$\left(\sum_{i=1}^{k-1} Y_i I(\nu \ge i), \quad I(\nu = k)\right)$$

and the random variable Y_k are independent. From it follows that

$$\begin{split} E(S_{\nu}) &= E\left(\sum_{i=1}^{k-1}Y_i(\nu \ge i) + Y_kI(\nu = k)\right) = \\ &= E\left(\sum_{i=1}^{k-1}Y_iI(\nu \ge i) + Y_kI(\nu \ge k)\right) = \int_R \int_{R^2}(x+yz)dQ(y)dQ'(x,z) \end{split}$$

is finite, where Q denotes the distribution of the Y_i 's, whilst Q' is the joint distribution of the vector

$$\left(\sum_{i=1}^{k-1} Y_i I(\nu \ge i), \quad I(\nu = k)\right).$$

Since $E(|S_{\nu}|) < +\infty$ by Fubini's theorem we have for Q'-almost all (x, z) the integral

$$\int_{R} (x+yz)dQ(y) = x + z \int_{R} ydQ(y)$$

is finite. Since $P(\nu = k) > 0$, z can be taken to be different from 0. This means that $\int_{R} y dQ(y) = E(Y_k) = E(Y_1) = a$ is finite.

Now let us show that $A_1^{(1)} < +\infty$. In fact, the random variables $Z_n = \sum_{i=1}^n S_i I(\nu = i)$ converge in L_1 to S_{ν} . Further

$$\left| S_{\nu} - \sum_{i=1}^{n} S_{i} I(\nu = i) \right| = \sum_{i=n+1}^{\infty} |S_{i}| I(\nu = i)$$

and the right hand side tends decreasingly to 0 as $n \to +\infty$. By the monotone convergence theorem and by the integrability of $|S_{\nu}|$ it follows that

$$E\left(\left|S_{\nu}-\sum_{i=1}^{n}S_{i}I(\nu=i)\right|\right)\downarrow0$$

as $n \to +\infty$. Since by our assumption $S_{\nu \wedge n} \to S_{\nu}$ in L_1 , we deduce the limit relation

$$\lim_{n \to +\infty} E(|S_n|I(\nu > n)) = 0$$

and we have

$$|S_n|I(\nu > n) = |S_{\nu \wedge n}| - |S_\nu|I(\nu \le n).$$

Integrating both sides of this relation and noting that

$$E(|S_{\nu}|I(\nu \le n)) \to E(|S_{\nu}|),$$

we get

$$\lim_{n \to +\infty} E(|S_{\nu \wedge n}|) = E(|S_{\nu}|) < +\infty.$$

Each term of the sequence is finite since

$$E(S_{\nu \wedge n}) = aE(\nu \wedge n).$$

This means that

$$A_1^{(1)} = \sup_{n \ge 1} E(|S_{\nu \land n}|) < +\infty.$$

Finally, if $a = E(Y_1) \neq 0$ then by Theorem 1 the last relation implies that $E(\nu)$ is finite.

This proves the assertion.

4. The case $a = E(Y_1) = 0$

It is of interest to give an upper estimate for the random variable $\sup_{n\geq 1} |S_{\nu\wedge n}|^p$, where $a = E(Y_1) = 0$. Below we generalize a result of Chow, Robbins and Siegmund (1971) and of Chow and Teicher (1978) by obtaining an estimate for $A_2^{(p)}$ in terms of some moments of Y_1 and of ν , where p is a power such that $1 \le p \le 2$. Our method of proof is different and leads to explicit upper bound (cf. Ishak (1992)).

Theorem 4. Let $a = E(Y_1) = 0$ and $1 \le p \le q \le 2$. If $E(|Y_1|^q)$ and $E(\nu^{p/q})$ are finite then

$$A_2^{(p)} \le C_p(p/2)^{-p/2} E(|Y_1|^q) E(\nu^{p/q}),$$

where C_p is a constant depending only on p.

Proof. By using the Burkholder-Davis-Gundy inequality we have

$$A_{2}^{(p)} \leq C_{p}E\left\{\left[\sum_{i=1}^{\infty}Y_{i}^{2}I(\nu \geq i)\right]^{p/2}\right\} = C_{p}E\left\{\left[\sum_{i=1}^{\infty}Y_{i}^{2}I(\nu \geq i)\right]^{q/2}\right\}^{p/q},$$

where $C_p > 0$ is a constant depending only on p, and here $q/2 \le 1$ and $p/q \le 1$. The following is true

$$E\left\{\sum_{i=1}^{\infty} Y_i^2 I(\nu \ge i)\right\}^{p/2} \le E\left\{\sum_{i=1}^{\infty} |Y_i|^q I(\nu \ge i)\right\}^{p/q}.$$

By using the concavity lemma (cf. Burkholder (1973) and Mogyoródi (1981)) we have

$$E\left\{\sum_{i=1}^{\infty} Y_i^2 I(\nu \ge i)\right\}^{p/2} \le (p/2)^{-p/2} E\left\{\sum_{i=1}^{\infty} E\left[|Y_i|^q I(\nu \ge i) \mid \mathcal{F}_{i-1}\right]\right\}^{p/q} = (p/2)^{-p/2} E\left\{\left[E(|Y_i|^q]^{p/q} \cdot \left[\sum_{i=1}^{\infty} I(\nu \ge i)\right]^{p/q}\right\} = (p/2)^{-p/2} [E(|Y_1|^q)]^{p/q} \cdot E(\nu^{p/q}).$$

Here we have used the fact that Y_i and \mathcal{F}_{i-1} are independent and $I(\nu \ge i)$ is \mathcal{F}_{i-1} -measurable. This proves our assertion.

As an easy consequence we formulate now the following

Corollary 1. Let a = 0 and $1 \le p \le q \le 2$. If $E(|Y_1|^q)$ and $E(\nu^{p/q})$ are finite, then

$$E(|S_{\nu}|^{p}) \leq C_{p}(p/2)^{-p/2}E(|Y_{1}|^{q})E(\nu^{p/q}).$$

Proof. By the preceding theorem the conditions imply that

$$A_1^{(p)} < +\infty.$$

Consequently, $S_{\nu \wedge n} \to S_{\nu}$ in L_p and a.s. From this

$$E\left(\lim_{n \to +\infty} |S_{\nu \wedge n}|^p\right) = E(|S_{\nu}|^p) \le$$
$$\le E\left(\sup_{n \ge 1} |S_{\nu \wedge n}|^p\right) \le C_p(p/2)^{-p/2} E(|Y_1|^q) E(\nu^{p/q}).$$

This proves the corollary.

On the basis of the preceding theorem the result of Chow and Teicher (1978) follows as a special case.

Corollary 2. If for some p, where $1 \le p \le 2$, $E(|Y_1|^p)$ and $E(\nu^{1/p})$ are finite, then $A_2^{(p)} < +\infty$.

Now we consider the case $p \ge 2$. It was proved by Burkholder (1973) and Mogyoródi (1977) that

(1)
$$c_p\left\{E(s^p) + \sum_{i=1}^{\infty} E(|d_i|^p)\right\} \le E(X^{*p}) \le C_p\left\{E(s^p) + \sum_{i=1}^{\infty} E(|d_i|^p)\right\},$$

where c_p and C_p are positive constants depending only on p, and

$$s = s(X) = \left(\sum_{i=1}^{\infty} E(d_i^2 |\mathcal{F}_{i-1}|)\right)^{\frac{1}{2}}$$

is the so-called conditional quadratic variation of a square integrable martingale (X_n, \mathcal{F}_n) with difference sequence $d_o = 0$, $d_i = X_i - X_{i-1}$, $i \ge 1$ and with $X^* = \sup_{n \ge 1} |X_n|$ is the corresponding maximal function.

To provide additional perspective we formulate the following results without proof specialized to the present situation with the martingale differences $d_0 = 0 = S_0$ and $d_i = Y_i I(+\infty > \nu \ge i)$. These results are immediate consequences of conditional version of Rosenthal's inequality (1).

Theorem 5. For $p \ge 2$ the moment $A_2^{(p)} < +\infty$ if and only if $E(|Y_1|^p)$ and $E(\nu^{p/2})$ are finite. In this case we have the inequality

$$c_p\left\{\sigma^p E(\nu^{p/2}) + E(|Y_1|^p) E(\nu)\right\} \le A_2^{(p)} \le C_p\left\{\sigma^p E(\nu^{p/2}) + E(|Y_1|^p) E(\nu)\right\}.$$

Here $c_p > 0$ and $C_p > 0$ are constants depending only on p and σ^2 denotes the variance of Y_1 .

Further, if $E(|Y_1|^p)$ and $E(\nu^{p/2})$ are finite then

$$c_p \left(\frac{p}{p-1}\right)^{-p} \left[\sigma^2 E(\nu^{p/2}) + E(|Y_1|^p) E(\nu)\right] \le \le E(|S_\nu|^p) \le C_p \left[\sigma^p E(\nu^{p/2}) + E(|Y_1|^p) \cdot E(\nu)\right].$$

The results of this theorem show that the random variable S_{ν} belongs to the Hardy space H_p if and only if $E(|Y_1|^p)$ and $E(\nu^{p/2})$ are finite.

Recently, M.Klass (1988) proved that in case $E(Y_1) = 0$ and for a power $p \ge 1$ we have $A_2^{(p)} \le CE(a_{\nu}^*)$, which by uniform integrability implies the validity of Wald's equation. Here $a_n^* = E\left(\max_{1\le k\le n} |S_k|^p\right)$ and C > 0 is a constant depending only on p.

This result was refined and sharpened in the form of two-sided inequality, cf. Bassily (1991). For the sake of completeness of this work and to provide an additional perspective concerning $A_2^{(p)}$ we formulate this result with a very compact proof.

Theorem 6. For $p \ge 1$ we have

$$cE(|S_{\nu}|^{p}) \le A_{2}^{(p)} \le CE(|S_{\nu}|^{p})$$

where in the case $1 \le p \le 2$ we also suppose that $\sigma^2 = E(Y_1^2)$ is finite (and = 1). Here c > 0 and C > 0 are two constants depending only on the distribution of Y_1 and on p and are independent of the choice of ν .

Proof. The idea of the proof is mainly based on the following inequalities:

a) If $p \ge 2$ then

$$c_p \left[\sigma^p E(\nu^{p/2}) + E(|Y_1|^p) E(\nu) \right] \le A_2^{(p)} \le C_p \left[\sigma^2 E(\nu^{p/2}) + E(|Y_1|^p) E(\nu) \right],$$

where $c_p > 0$ and C_p are constants depending only on p. It is clear that the left and right-hand sides are finite if and only if so are $E(|Y_1|^p)$ and $E(\nu^{p/2})$, cf. Bassily, Ishak and Mogyoródi (1987). This inequality can be written in the following form

(2)
$$c_p \sigma^p E(\nu^{p/2}) \le A_2^{(p)} \le 2C_p E(|Y_1|^p) E(\nu^{p/2}).$$

b) For $1 \le p \le 2$ Burkholder and Gundy (1970) have proved the following two-sided inequality: if $\sigma^2 = 1$ then

(3)
$$c_{p,d}E(\nu^{p/2}) \le A_2^{(p)} \le C_pE(\nu^{p/2}),$$

where $C_p > 0$ is a constant depending only on p whilst $c_{p,d} > 0$ is such a constant which depends not only on p, but also on $d = E(|Y_1|)$.

c) By using the Marcinkiewicz-Zygmund inequality ((1937) and (1938)) one can easily prove that for $p \ge 2$ supposing $E(|Y_1|^p) < +\infty$ for every $n = 1, 2, 3, \ldots$ we have

(4)
$$c_p^{(1)} \sigma^p n^{p/2} \le E(|S_n|^p) \le C_p^{(1)} E(|Y_1|^p) n^{p/2},$$

where $c_p^{(1)} > 0$ and $C_p^{(1)} > 0$ are constants depending only on p.

If $1 \le p \le 2$ and $\sigma^2 = E(Y_1^2)$ is finite then

(5)
$$E(|S_n|^p) \le C_p^{(1)} \sigma^p n^{p/2}, \quad n = 1, 2, \dots$$

From (4) and (5) we have for all $p \ge 1$ that

(6)
$$E(|S_{\nu}|^{p}) \leq KE(\nu^{p/2})$$

holds with some K > 0 depending only on p and the distribution of Y_1 , and is independent of the choice of ν . Applying (6) to the left-hand side of (2) in case $p \ge 2$ and to the left-hand side of (3) in case $1 \le p \le 2$ we have with some constant c > 0 that

(*)
$$cE(|S_{\nu}|^p) \le A_2^{(p)}, \quad p \ge 1.$$

For $p \ge 2$ by using the inequality (4) it is clear that

(7)
$$E(\nu^{p/2}) \le K_1 E(|S_\nu|^p)$$

holds with the $K_1 = \frac{1}{c_p^{(1)}} \sigma^{-p}$ positive constant. Applying (7) to the right-hand side of (2) we have with a positive constant $K_2 = 2C_p \frac{1}{c_p^{(1)}} \sigma^{-p} E(|Y_1|^p)$, which does not depend on the choice of ν , that

(8)
$$A_2^{(p)} \le K_2 E(|S_\nu|^p), \quad p \ge 2.$$

Also, for $1 \le p \le 2$, by using the Burkholder-Davis-Gundy and the Marcinkie-wicz-Zygmund inequality one can prove that

(9)
$$A_2^{(p)} \le 4 \frac{C_p}{c_p^{(1)}} E(|S_\nu|^p), \qquad 1 \le p \le 2.$$

Making use of (8) and (9), we have with C > 0 that

(**)
$$A_2^{(p)} \le CE(|S_{\nu}|^p), \quad p \ge 1.$$

Now, employing (*) and (**), we have for $p \ge 1$ that

$$cE(|S_{\nu}|^p) \le A_2^{(p)} \le CE(|S_{\nu}|^p).$$

Here c > 0 and C > 0 are two contants depending only on p and on the distribution of Y_1 and are independent of the choice of ν provided that $E(|Y_1|^p) < +\infty$ if $p \ge 2$, and $\sigma^2 < +\infty$ (and = 1) if $1 \le p \le 2$. This proves our assertion.

References

- Bassily N.L., Ishak S. and Mogyoródi J., On Wald-type inequalities, Annales Univ. Sci. Bud. Sect. Comp., 8 (1987), 5-24.
- [2] Bassily N.L., On an inequality of M.J.Klass, Annales Univ. Sci. Bud. Sect. Comp., 11 (1991), 53-62.
- [3] Blackwell D., Extension of a renewal theorem, *Pacific J.Math.*, 3 (1953), 315-320.
- [4] Burkholder D.L., Distribution function inequalities for martingales, Annals of Probab., 1 (1973), 19-42.
- [5] Burkholder D.L. and Gundy R.F., Extrapolation and interpolation of quasilinear operators on martingales, Acta Math., 124 (1970), 249-304.
- [6] Chow Y.S., Robbins H. and Siegmund D., Great expectations: The theory of optimal stopping, Houghton Mifflin Co., Boston, 1971.
- [7] Chow Y.S. and Teicher H., Probability theory, independence, interchangebility, martingales, Springer, 1978.
- [8] Gut A. and Janson S., Converse results for existence of moments and uniform integrability for stopped random walks, *Annals of Probab.*, 14 (1986), 1296-1317.

- [8] Ishak S., Remark on a theorem of Burkholder and Gundy, J. of Theor. Probab., 5 (1992), 153-158.
- [9] Klass M.J., A best possible improvement of Wald's equation, Annals of Probab., 16 (1988), 840-853.
- [10] Marcinkiewicz J. and Zygmund A., Sur les fonctions indépendantes, Fundamenta Math., (1937), 60-90.
- [11] Marcinkiewicz J. and Zygmund A., Quelques théorèmes sur les fonctions indépendantes, *Studia Math.*, 7 (1938), 104-120.
- [12] Mogyoródi J., On an inequality of H.R. Rosenthal, Periodica Math. Hung., 8 (1977), 275-279.
- [13] Mogyoródi J., A concave function inequality for martingales, Annales Univ. Sci. Bud. Sect. Math., 24 (1981), 265-271.

N.L. Bassily

Department of Mathematics Faculty of Science Ain Shams University Cairo, Egypt