Annales Univ. Sci. Budapest., Sect. Comp. 15 (1995) 125-141

AN EFFICIENT SEMI-NAIVE ALGORITHM
FOR DATALOG

T. Markus and Manh Thanh Le
(Budapest, Hungary)

Abstract. This paper gives the Efficient Semi-Naive Algorithm for the
Datalog program which is a modification of the Semi-Naive Algorithm.
This modified algorithm converges faster than the semi-naive one and has
no redundancies of the join operation. At the same time the paper also
introduces a stratified method for Datalog programs. By the method we
can use several variants of the naive and semi-naive algorithms to evaluate
Datalog programs.

1. Introduction

The use of the logic programming paradigm in the context of data and
knowledge base has been an important focus of research in the last years. This
research revolved around attempts to extend Datalog.

We can view a Datalog program as defining functions that take EBD
relations as arguments and IDB relations as values. Likewise, relational
algebraic expressions defining functions take given relations as arguments and
produce values which are the computed relations.

In Chapter 3 of [1] it is noted that the set of functions expressible in
relational algebra is equivalent to those functions which are expressible in the
Datalog (with possible negation), if the rules are rectified to be safe, non-
recursive.

One of main characteristics of logic programming languages is their ability
to express recursion. In this case the fixed point theory is well suited for
describing their semantics ([2]).

Research was supported by the Hungarian Foundation for Scientific Re-
search Grant OTKA 2149.

126 T. Mirkus and Manh Thanh Le

For each rule of a (possibly recursive) Datalog program we can correspond
a relational algebraic equation. The meaning of a Datalog program is the least
fixed point of the corresponding system of relational algebraic equations. This
paper is dealing with the efficient solution of the system of equations.

Datalog programs are built from atomic formulae: ordinary and built-in
predicates.

The ordinary predicate is a predicate symbol with a list of arguments
which can be constants and variables. According to one predicate p there
is a relation P such that a tuple (a1, as,...,a,) € P iff p(ay,az,...,a,) is
true. If the relation P is given in the database, then the corresponding p is
an EDB (Extensional DataBase) predicate, the other ordinary predicate is an
IDB (Intensional DataBase) one.

The built-in predicate is an arithmetic comparision.

An atomic formula or its negation is a literal. If all arguments in the literal
are constants, then it is a ground literal.

A Datalog program is a collection of Horn-clauses in the form of ¢ :
—s51&s2& .. .&s,, where ¢ must be an IDB predicate (head of the rule), s;’s
(I—,Z) are positive literals, which are subgoals of the body s;&s2& . ..&s,. The
meaning of this rule is: if s; Asy A...A s, is true, then ¢ must be true, here A
means the operation of conjunction.

For showing dependencies of predicates in a program we draw a depen-
dency graph whose nodes are the ordinary predicates and there is an arc from
predicate p to predicate ¢ if there is a rule with the head ¢ and a subgoal p. A
Datalog program is recursive if its dependency has one or more cycles (loops).

We say that predicates p and ¢ are mutually recursive in the program P
if they are both contained in a circle of the dependency graph of P.

To each rule r : ¢ : —s1&s2& .. .&s, there corresponds a relational
algebraic equation @ = EVAL — RULE(r, P, ..., Pg), where P;’s (i = 1, 3) are
the relations of the ordinary predicates s;’s occuring in the body of the rule r,
and EVAL-RULE(.) is a relational algebraic expression containing operations:
join, projection, selection. This expression is introduced in [1].

For the set of rules having the same head predicate ri : q : —sp1&sk2& . ..
... &skn, (k =1, m) the corresponding equation is P; = EVAL(q, Py, ..., Ps),
where EVAL(q, Py, ..., P3) is the union of EVAL-RULE(r,.) (k = 1, m)
after taking appropriate projections. For convenience we sometimes write
E;(Py,. .., Pg) instead of EVAL(p;, Pi, ..., Pg).

We give some definitions for classification of a Datalog program and the
system of corresponding relational algebraic equations.

An efficient semi-naive algorithm for Datalog 127

Definition 1.1. Given a Datalogrule r: ¢ : —s1&...&s,. We say that r
is linear with respect to s; if there is at most one occurence of s; in the body
of the rule.

Definition 1.2. Given a Datalog program P containing the rule 7 : q :
—51&s2& .. . &s,. We say that 7 is linear in the program P if there is at most
one s; in the rule body (possibly ¢ itself) which is mutually recursive to ¢ in

P.
Definition 1.3. A Datalog program P is linear if
i) all its rules are linear in P;
i) the dependency graph of P contains at most one circle (loop).
Definition 1.4. An equation P; = E;(P,, ..., Pg) is linear with respect to

P; iff it is derived from the set of Datalog rules which are linear in the predicate
p; corresponding to P;.

Definition 1.5. Given a Datalog program P with the IDB predi-
cates pi,p2,...,pp in it, then the corresponding system of equations P; =

= Ei(Py,...,P3) (i = 1, B) is linear iff the program P is linear.

2. Buttom-up evaluation methods for finding the least fixed point
(LFP) of a Datalog program

2.1. The Naive evaluation

The well known and simplest method for finding LFP is the following
Algorithm 2.1. Naive algorithm ([1])

Input: The system of relational algebraic equations P; = Ei(P1, Ps, ..., Pp)
(i = 1,n) of a Datalog program P and an Extensional Database EDB =
= (R1,Rz2,...,Rm).

Output: The Intensional Database IDB = (P, P, ..., P,) as least fixed
point of P.

Method: The details of the algorithm are shown in Figure 2.1.

fori:=1tondo P, =0
repeat
fori:=1tondo B; := P
fori:=1tondo

128 T. Méirkus and Manh Thanh Le

P; .= E,'(Bl,Bg,...,Bn);
until P; = B; for all ¢;
output Pjs

Figure 2.1

This method has a number of redundancies of the join operations in

computing Pi(k), where P,-(k) is the result of relation P; after k executions of
repeat-loop. It is easy to see that Algorithm 2.1 halts and its correctness is
stated by the following

Theorem 2.1. ([1]) Algorithm 2.1 correctly computes the least model of
a rectified safe Datalog program.

2.2. The Semi-Nawve evaluation

To decrease the number of redundancies of the join operations in the com-
putation the well known Semi-Naive algorithm is used. In this algorithm the
incremental relations are used to avoid computing again the tuples computed
already.

First we consider a rectified safe Datalog rule r of the form
(1) r: pi(X1, X2, .o, Xk) t —s1&so& . &sm&so,
where s;’s (i = 1, m) are ordinary subgoals; s¢ is a list of built-in predicates in
the rule.

For each i (i = 1, m) let R; be the current relation of the literal s;, AR;
be the set of tuples in R; on the most recent round of the Naive algorithm. For
each rule r we define the incremental relation as follows

EVAL — RULE — INCR(r, Ry, R, ..., Rm, ARy, ARy, ..., ARy) =
= |J EVAL - RULE(r,Ri,Rs, ..., Ri_1,AR;, Riy1,..., Rm).

1<i<m

Now suppose that P;’s (i = 1, n) are relations for I DB predicates and A P;
is the incremental relation associated to P;. We denote the set of what EVAL-
RULE-INCR produces for all rules with head p;, after taking a projection onto
variables X1, X5, ..., X by

EVAL - INCR(}),’,P],PQ,...,Pn,Apl,APQ,...,APn).

Algorithm 2.2. Semi-Naive algorithm ([1])

An efficient semi-naive algorithm for Datalog 129

In_pﬂ: The system of relational algebraic equations P; = E;(Py, Py, ..., Py)
(i = 1,n) of a Datalog program P and an Extensional Database EDB=

= (R1, Rz, ..., Rm).

Output: The Intensional Database IDB=(Py, P,,..., P,) as least fixed
point of P.

Method: The details of the algorithm are shown in Figure 2.2.

for i := 1 to n do begin P; := 0; AP; := E;(0,0,...,0) end;
repeat
fort=1tondo AB; := AP;;
fori=1tondo
begin
AP; := EVAL — INCR(p;, P\, P2, ..., P,,ABy,ABs,...,AB,);
AP,‘ = AP,' - P,'
end;
fori=1tondo P; := P,UAPF;;
until AP; = 0 for all ¢

Figure 2.2

Theorem 2.2 ([1]) The algorithm 2.2 correctly computes the least model
of a rectified safe Datalog program.

2.3. Evaluation of Datalog programs in special forms

In that case when each equation of the system is linear with respect to
every variable P; (i = 1, n), the equation is derived from rules which are linear
with respect to all predicates in rule bodies. We consider a rule r of form (1)
and suppose that each IDB predicate has no more one occurence in the body.

We have
EVAL — INCR(p;, Py, P2, ..., Pa, AP, AP, ... ,AP,) =

U mx, x. [U EVAL—RULE(p,-,Pl,...,I’g_l,A}’,-,PiH,...,P,,)] =

reH, 1<i<n

U Dx,.x. [U EVAL — RULE(p;, Py, ..., Pie1, AP;, Piy1, ..., Pa)
1<i<n re€H,

U Ei(Plv"')Pi—lyAPini+1,...,Pn),

1<i<n

130 T. Markus and Manh Thanh Le

where H; is the set of rules having the head predicate p; in the program.
Thus for the Semi-Naive algorithm we can use the following iterations

P("'“) P(k)UAP(k‘H)

where

APMY = |) E(P,... . PE,AP® P, . PP) ~ PP,
1<i<n
AP =pPO =9 (i=Tm k=0,1,2,..)).

In that case if each equation P; = E;(P, P,, ..., P,) is linear with respect to
P, itself, then instead of the iterations of Semi-Naive algorithm we can use the
following simpler iterations:

P(’H'l) P(") U AP("+1)
where

AP("‘H) E; (P(k) P(") P(k) AP(") Pj(:i’ e P'Sk)) _ P.-(k),

Example 2.1. Given the Datalog program P

P1(X,Y): —s1(X,Y).
P1(X,Y): —s1(X, 2)&p1(2,Y).
p2(X,Y) : —s2(X,Y).
P2(X,Y) 1 —s2(X, Z2)&p2(2,Y).
p3(X,Y) : —p1(X, 2)&p2(2,Y).

Figure 2.3
where p;’s (i = 1,2,3) are IDB predicates and the relation of p; is P;, the
si’s (1 = 1,2) are EDB predicates whose relations are S; = {ab, be, cd}, S» =
= {df, fg,gh} (zy is written instead of (z,y)).

An efficient semi-naive algorithm for Datalog 131

If we use one of the above methods then the given result is
P, = {ab, bc, cd, ac, bd, ad} P, = {df, fg,9h,dg, fh,dh}

P3 = {af,ag,ah,bf,bg,bh,cf,cg,ch}

This is the least fixed point of P, but in the computation there is redundacy
of the join operations.

Let us remark that this program is not linear by our Definition 1.5, but
it is linear by the Definition 8.9 of [3]. Therefore if we apply the Semi-Naive
algorithm [3] for P we have P;, P, as the above computed relations, but P; =
= {cf, bg, ah} which is not the least fixed point of P.

3. The efficient Semi-Naive algorithm

Consider the expression EVAL-RULE-INCR in the Semi-Naive algorithm.
This expression is the union of expressions

EVAL — RULE(r, P®), ..., P, aP®) P PP, (1 =TB),

where
AP® = p®) _ pk-1)
J j j :

In the algorithm the differences APl(k"'l), ce APi(f'lH) have not been used to
compute AP,.(HI) even they are computed now. Moreover, the tuples produced
from APl(k),APy), R APlgk) (k=0,1,2,...) will be repeated a lot of times
in computing EVAL-INCR-RULE(r, P*), ..., P, AP, ..., AP{P).

It can be modified by substituting the expression
A(i,k) = EVAL — INCR(p;, P*),..., PV, AP, ..., AP{Y)
by the expression

A*(i, k) = EVAL — INCR*(p;, P, ..., PV AP, ... aP{M) =

= U EVAL(pi) Tl(k)) RS trl(_k%) Ang)) Qgi)lv ey QEJ")):
1<I<p

132 T. Markus and Manh Thanh Le

where
® PEYY i 1< <,
Qj =
PP i i<i<h
“ APFY if 1< <,
AQ® = .
AP if i<ji<p;

for every k =0,1,2,...,:=1,8, j=1,5.
Lemma 3.1.

A(i k) C A*(i, k).

Proof. Suppose that £ € A(7, k), then z set up from z; € P,(k) (UEX))
and z; € AP® by EVAL-RULE(r, P®), ..., PE) AP, PE) . PSY)) for
some r € A; and some j (1 < j <), where A; is the set of rules having the
head predicate p;.

It is clear that z; € P,(k) iff either z; € P,(k_l) orz € AP,(k).

If z; € AP(" then z €EVAL-RULE(r, AP, P{®), ..., P{")) and there-
fore z € A*(i, k) else

if zo € AP2(k) then z EEVAL-RULE(r, Pl(k_l),APz(k), ceey Pék)), therefore
z € A*(i, k) else

If zj_1 € AP*) then

z €EVAL-RULE(r, P70, POV APR) PP PSP), therefore
z € A*(i,k) else z €EVAL-RULE(r, P*™V, ... P*TD AP APS), ..,
Plgk)) and so ¢ € A*(i, k).

Lemma 3.2.
EVAL(p;, PV, ..., P§) ¢ PV UA*(i, k)

for everyk=1,2,...,i=1,5.

An efficient semi-naive algorithm for Datalog 133

Proof. It is clear that

EVAL(p;, P*), ..., P{") = PP U A, k) € PP U A, k).

Now let us describe the details of the modification.

Algorithm 3.1. Modification of the Semi-Naive algorithm to compute the
least fized point of a Datalog program.

Input: A collection of the safe Datalog rules with the EDB predicates
T1,72,...,Ta, the IDB predicates p1,p2,...,ps and a list of Ry, R3,..., Ry to
serve as values of the EDB predicates.

Output: The least fixed point solution to the relational equations obtained
from these rules.

Method: We use the function EVAL once to get the initial state for the
IDB relations and then EVAL-INCR* is used repeatedly on the incremental
IDB relations. The computation is shown in Figure 3.1.

fori=1to 8 do P; := AP; := EVAL(p;,9,...,0);
repeat
fori=1to B do
AQ; =0
for j:=1to B do
begin if j > 1 then Tj_; := Pj_; — AP;_y;
R:=EVAL(pi, T, ..., Tj-1,AP;, Pjy1, ..., Pg);

AQ; :=AQ;UR

end;

AP; .= AQ; - P; P,=PFPUAP
end

until AP; = @ for all ¢,
output Ps
end

Figure 3.1

In the computation for each predicate p; there is an associated relation P;
which contains all the tuples, and there is an incremental relation A P; which
contains only the tuples added in the previous round.

The correctness of the algorithm is shown in the following

134 T. Markus and Manh Thanh Le

Theorem 3.1. If a Datalog program P does not contain negation in the
bodies and it is rectified to be safe, its EDB database is finite, then Algorithm
3.1 halts and it does so at the least fired point of the program to which it is
applied.

Proof. It is clear that the sequence p* (@ = 1,8, k = 0,1,2,..)
of

produced by Algorithm 3.1 is monotonic and .the DO database is finite.

Hence, the algorithm halts.

Let P! (i = 1, 8) be the limit of the sequence P,-'(k) produced by the Naive
algorithm; P! (i = 1,) be the limit of the sequence P produced by the

Semi-Naive algorithm. It is known that P/ = P/’ (i = ﬁ)
First we shall show that Pi”(k) - Pi(k) for every k = 1,2,...;i = 1,8.
Fork=1:P" = pP'D = AP® = AP"Y = EVAL(p;,0,...,0) (i = 1, B).
Suppose that for every £ (1 < ¢ < k) Pi”(l) C PtH(i=1,p).
Fork=£(+1:

P'® = p" YEVAL ~ INCR(pi, P"“), ..., P{®, aP/®, ..., aP?).

By P") ¢ P we have P"® ¢ PO UEVAL(p;, P, ..., P{") C PV (i =
=1,8).
Next we prove that for each non-negative integer k; there exists k3 such
k k . T
that P,~(2) - P,-'(*) for every i = 1, .
Indeed, if ko = 1 then k3 = 1.

_Suppose that for every ¢ < ky there is €3 such that P,-(l’) - P,-/(t’) (=
= l,ﬂ) For ko = 45+ 1:

PX*? = p{* UEVAL — INCR*(p1, P{*”, ..., P{"), AP{*?, ... AP{"®)) =
= P UA (1, 6),
but

A*(1,6) = |J EVAL(p, P{?,..., P2, AP PR, ... P{*)),
1<5<p

and therefore)
Pl(kz) C Pxn*taﬂ).

P{*) = P{*) UEVAL — INCR* (po, P{”), ..., P{', AP(*), ..., AP{*")) =
= P{" UA*(2,6,),

An efficient semi-naive algorithm for Datalog 135

but

A*(2,£) = EVAL(pz, AP{“YY . P{*)u

U U EVALG, P, P2 AR, P P,
255<P

and therefore ng’) C Pé(t’“). Analogously, Pj(k’) - PJ-'(t’“) for every j =
=1,0 and P,gk’) - P;,(l”p). By monotonicity of the sequence P,-'(k) we have

Pl(kz) g Pl'(la"’l) _C_ Pll(l3+ﬂ),
P2(k2) g P2/(13+2) g le(l3+ﬂ),

(k2) /(L3+P)
Py 2 gPﬂ 3TE

Therefore for k3 = £3 + § we have Pi(k’) - P,-'(ka) (i=1,58).
Taking limit of all sequences P,-"(k‘), P,.(k’), P"(k“) (i =1,) we have

P'CPCP!, i=1p8 but P'=P.

This implies that P; = P/ for every i = 1, 3.

It is not difficult to prove that the number of iterations of Algorithm 3.1
is polynomial in the size of the input of program to which the algorithm is
applied. Now we show that the given algorithm converges no slower than the
Semi-Naive algorithm.

Theorem 3.2. For the same program Algorithm 3.1 will halt after no
more steps than the Semi-Naive algorithm.

Proof. In the proof of Theorem 3.1 we can see that P,-"(k) - Pi(k) (i=1,8)
for every k.

Moreover, the sequence P‘-(k) and the sequence P,-"(k) are monotonic and

converge to the same limit. Therefore, if P,."(m) = P (i = 1,0) then E(m) =
= P;, too. This shows that if the Semi-Naive algorithm halts at ¥ = m then
Algorithm 3.1 does so at k < m.

Theorem 3.3. There is no redundancy of join operations in performing
Algorithm 3.1.

Proof. Let r be the rule having the head predicate p; (1 <i <) and kg
be the least such number that the tuples z; € Qg.k“) (= .1,_[3) In the process of

136 T. Mdrkus and Manh Thanh Le

evaluation if there exists one occurence E=EVAL-RULE(r,{z1},...,{zs}) in
the computing A*(z, ko), then it will not be repeated in the computing A*(z, k)
for k > ko.

Case a) If k = ko let j be the least such index that z; € AQY") and
z € karl) for every 1 < I < j < (. Then E occurs only once in
the evaluation of EVAL-RULE(r, Q{*~", ..., @{*", aQ*, ..., Q%) for
computing A*(3, ko).

Case b) If k > ko then z; ¢ AQ(k) (j = 1, 8), because A Q(k) Q(k)
—ng—l) and k —1 > ko.

Finally, we give an example in which case Algorithm 3.1 converges really
faster than the Semi-Naive algorithm.

Example 3.1. Given two directed graphs without cycle: Gy = (4, Ny),
G2 = (Aa, N3), where A;, A, are the sets of nodes, Ni, N are the sets of arcs,
N1 N N3 = 0. The program given by Figure 2.3 of Example 2.1 looks for such
nodepairs (X,Y), X € A;, Y € A, that there exists a path from X to Y. For
each index i (¢ = 1,2) let 7;(X,Y) (¢ = 1,2) be an EDB predicate, which is
true iff there is an arc from X to Y in G;. p; is an IDB predicate and p;(X,Y)
(i = 1,2) is true iff there is a path from X to Y in G;, p3(X,Y) is true iff there
is a path from X € A, — A, toY € A, — A;.

Let R; (i = 1,2) be the relation associated to r;, P; (i = 1,2,3) be the
relation associated to p;. For computing P; we have to look for the least fixed
point of the system of equations given by Figure 3.2:

Pl(X,Y) = Rl(X,Y) U ny(Pl()(, Z) %] Rl(Z,Y)),
Pay(X,Y) = Ry(X,Y)Unxy (Pa(X, Z) 0 Ro(2,Y)),
P3(X,Y) = ny(Pl(X, Z) D1 PQ(Z, Y))

Figure 3.2

Now suppose we have graphs G; and G, shown in Figure 3.3.

C

a f
Ay = {a,b,c} N: = {(a,d),(b,0)}

An efficient semi-naive algorithm for Datalog

137

A'Z = {cydlf}

Ny = {(C,d), (dr f)}

Figure 3.3

For convenience we shall use more compact notations for the tuples, zy
instead of (z,y).

Let the EDB relations be R; = {ab, bc} and R, = {cd, df}.

a) By applying the Semi-Naive algorithm the iteration steps and the
solution of equations shown in Figure 3.2 is given by Figure 3.4.

b) By applying the efficient Semi-Naive algorithm the iteration steps and
the solution of the same equations is given by Figure 3.5.

step APl P1 APz P2 APa P3
1| R Ry R, R, 0 0
2 | {ac} | RiU{ac} {{cf} | R2U{cf} {bd} {bd}
3 0 - 0 - {ad) af, bf} {bd, ad: af) bf}
4 0 — 0 — 0 -
Figure 3.4
step | AP P, AP, P, AP; P3
1| R, Ry R R, {bd} {bd}
2 |{ac} |R1U{ac} |{cf} | ReU{cf} |{ad,afbf} |{ad bd,af bf}
3|1 0 - 0 - 0 -

Figure 3.5

138 T. Mdrkus and Manh Thanh Le

4. The stratified evaluation method for finding the least fixed point
of a Datalog program

4.1. Connected graph

Now we create a connected graph (C-graph) from the dependency graph
(D-graph) for the given Datalog program P.

Let D = (V, N) be the D-graph of P, where V is the set of oriented arcs
and N is the set of nodes (labeling by the names of predicates).

Definition 4.1. We that a,b € N are connected components of D iff a
and b are mutually recursive (a = b is permitted).

Let

M, = {y: z and y are connected components of D},

M, if M, #0,
C(z) =

{z} otherwise.

Notice that if z and y are connected components of D then M; = M,.
Definition 4.2. The C-graph for P is C = (V’, N’) where

N' ={C(z): =z €N},
V'={(u,v): thereisz€u, y€v and (z,y) €V}

Because the D-graph of P is orientated, the defined C-graph is orientated, too.

For the program P given by Example 3.1 the D-graph and the correspond-
ing C-graph are shown in Figure 4.1.

Corollary. The C-graph does not contain a circle, so we can stratify ils
nodes. Let u€ N', we say that u is in stratum i if the mazimal length of all
possible oriented paths to u is equal to 1.

Let us remark that if a program P does not contain mutually recursive
predicates then its C-graph is the D-graph.

An efficient semi-naive algorithm for Datalog 139

51 52 C(s1) C(s2)

51 p2 C(p1) C(p2)
p3 C(ps)
D — graph C — graph
Figure 4.1

We can stratify all the predicates of a given program P. If z € N and C(z)
has stratum ¢, then all predicates in C(z) have stratum 2, too. It is clear that
every EDB predicate has stratum 0.

Now let us suppose that the predicate p; is in stratum 7 and every predicate
having stratum j < i is evaluated. Let the program P’ be the set of those rules
of P whose head predicates are in C(p). The predicates of P which have
stratum j < i are the EDB predicates of P’.

Next we evaluate the relations for the IDB predicates in P’. If C(p)
contains only one predicate and this predicate is non-recursive, then its relation
is computed from the EDB relations using relational algebraic operations
(EVAL function). Otherwise let the system of equations II' corresponding
to P’ be

P1 :El(Pl,...,Pp)

Py = Ey(Py,. .., Pg)
Pp = Ep(Pl,...,Pp),

where E; is the relational algebraic expression EVAL corresponding to the
predicate p;.
We compute P; (i = 1, f) as follows:

a) If each equation of II' is linear with respect to every variable P; (i = 1, 8)
then we can use the iterations of the Semi-Naive or the Efficient Semi-Naive
algorithm.

b) If I’ is linear (see Definition 1.5) then we can apply the following
iterations which are given in [3]:

PHHY = pB yAPED, APO =p@D =9 (i=T,8 k=0,1,2,..),

140 T. Méirkus and Manh Thanh Le

where
APED = BAP®), . APP) - P®.

¢) If each equation P; = E;(Py,...,Pg) of II' is linear with respect to
P; then we can use the iterations of the General Semi-Naive algorithm (see
Subsection 2.3).

d) If I’ has not the properties a), b), c) then apply the iterations of the
Naive algorithm.

4.2. Linearization

In the previous section we gave the Efficient Semi-Naive algorithm for the
case when the Datalog program does not contain that rule whose body has
repeated occurences of the IDB predicates. To use the above algorithm in
general case, we have to transform the given Datalog program by the following
way:

Let r:q: —q1&q28& .. .&q, . be the rule which contains repeated occurences
of IDB predicates.

Step 1. Look for the least index i such that there is at least two occurences
of an IDB predicate g¢;.

Step 2. Substitute the rule r by two rules r;, 73 using a new predicate
symbol p
ri: q: —q& ... &qi&p.

re: p: —qin1& ... &qn.

If 79 is linear with respect to every occurence of the IDB predicates in it
then exit, else let r be r2 and go to step 1.

It is easy to see that the rewritten rules are linear with respect to the IDB
predicates being in the bodies.

Acknowledgement. The authors would like to thank Andras Benczur
for insightful discussions about this paper and the careful comments on the
second part.

An efficient semi-naive algorithm for Datalog 141

References

(1] Ullman J.D., Principles of Database and Knowledge Base Systems,
Computer Science Press, 1988.

[2] Gurevich Y. and Shelah S., Fized-Point Eztensions of First Order
Logic, FOCS, 1985.

[3] Cerl S., Gottlob G. and Tanca L., Logic Programming and Databases,
Springer, 1989.

(Received September 10, 1992)

T. Markus and Manh Thanh Le
Department of General Computer Science
Eotvos Lorand University

VIII. Mizeum krt. 6-8.

H-1088 Budapest, Hungary

