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STIRLING’S METHOD
IN GENERALIZED BANACH SPACES

LK. Argyros (Lawton, USA)

Abstract. We provide convergence results and error estimates for
Stirling’s method in generalized Banach spaces. The idea of a generalized
norm is used which is defined to be a map from a linear space into a
partially ordered Banach space. Convergence results and error estimates
are improved compared with the ones of other methods.

I. Introduction

A fixed point z* of an operator G defined on a convex subset D of a
generalized Banach space E (to be precised later) and taking values into itself
satisfies the equation

(1) F(z*)=0 in D,
where
(2) F(z) =z - G() forall z € D.

The fixed point z* can be approximated using a method of the form

(3) Znt1 = 2n + g (I = F'(F(20))tn + F(zn) =0, 130
(4) — Yn:= Ln(yn) = F’(F(xn))yn - F(xn)v n>0, zg€D.

The above method is the so-called Stirling’s method. Stirling’s method can
be viewed as a combination of the method of successive substitutions and
Newton’s method. It is consequently reasonable to examine the convergence
of the method of successive substitutions. In terms of computational effort,
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Stirling’s and Newton’s method require essentially the same labour per step,
as each requires the evaluation of F, F’ and the solution of a linear equation,
assuming that F' and its derivative are evaluated independently. Convergence
results and error estimates for Stirling’s method are derived. A generalized
norm is used which is defined to be a map from a linear space into a partially
ordered Banach space. By this tool the metric properties of the problem can
be better analyzed. Our results compare favourably with similar ones obtained
for Newton’s method in [7], [6] and [8]. Finally relevant work can be found in
[1], [9] and [11] for the real norm theory.

II. Preliminaries

To make the paper as self-contained as possible we reproduce some
variations of definitions 1-5 which can also be found in (8, p.250].

Definition 1. A generalized Banach space is defined to be a triple (E, Z,
/ - /) with the following properties:
(a) E is a linear space over R(C);
(b)) Z=(Z,K,||-||) is a partially ordered Banach space.
That is
(1) (Z,|]-1]) is a real Banach space;
(b2) Z is partially ordered by a closed convezr cone K;
(b3) the norm || - || is monotone on K;
(c) The map /- /: E — K satisfies forz,y € E, X € R(C):

/z/ =0<=z=0, [Az/=/N"[z/, [z+y/</[z/+]y/
(d) E is a Banach space with respect to the induced norm
-lle==1-1-7-7

The map /- / is called a generalized norm. Because of (¢) and (b3) || - ||; is
indeed a real norm. In the following all topological terms will be understood
with respect to this norm.

Definition 2. We will denote by L(E™, E) the space of n-linear symmetric
bounded operators from E™ to E, where E™, E are Banach spaces. If E, E are
partially ordered denote by L (E™, E) the subset of monotone operators M such
that

0<a;<b= M(ay,...an) < M(by,...,b,).
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Definition 3. For an operator L € L(E,E) on a generalized Banach
space (E,Z,/- /) the set of bounds is defined to be

B(L) := {M € Ly(Z,2)/|Lz| < Mlz| for z € E}.

II1I. Convergence conditions and error estimates

In this section we shall study the iterative procedure (3)-(4) for pairs
(F, zo) belonging to the class C(r, P,Q1, Q2) defined as follows: we say that a
pair (F, zo) belongs to the class C(r, P, Q1, Q2) if

(a) F is a nonlinear operator defined on a convex subset D of a Banach space
E and with values in E.

(b) The operator F is Fréchet-differentiable on the interior D° of D and the
linear operators I — F'(F(z,)), n > 0 are such that:

(b1) There exist an operator P € B(F'(F(zo))) and operators Q;,Q2 €
€ L(Z%,Z) such that

(6)  |F'(v)y— F(w)yl < Qi(lv —wl,Jyl) for v,weD, yeE

and

|F'(zn)y—(I - F'(F(za)yl < Q2 | Y Iz — zj-1l, 19l ],
(6) j=1

n>0, zn€D, y€eE.
(¢) There exists a solution r € K of the inequality
(M Ro(r) := Pr+(Q1 + Q2)r’ + |F(zo)| < r.
(d) The ball
(8) U(zo,r) = {z € E| |s —zo| <7} < D

and
(e) the estimate

9) (P+2(Q1 +Q2)r)fr -0 as k— oo
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is true.
We will need the following

Lemma 1. Let (Z,K,||-||) be a partially ordered Banach space, w be an
element of K and P€ Ly(2,2), Q € L(2%,Z).
(a) If there ezists r € K such that

Ro(r)<r and (P+2(Q+Q2))fr—0 as k— oo

then
b:= R§°(0) := lim (Rg(0))

is well defined, solves b = Ro(b) and is smaller than any solution of the

inequality Ro(d) < d.
(b) If there ezxists ¢ € k and X € (0,1) such that Ro(q) < Aq then there ezists
r < g satisfying (a).

Proof. (a) Let us define the sequence {b,}, n > 1 by b,, = R2(0). We first
show that the sequence {b,}, n > 1 is bounded above by . For n = 0, b, =
= Ro(0) = w < r. Let us assume b, = R}(0) < r. Then

bnt1 = RGH1(0) = Ro(RE(0)) = Ro(bn) = Pbp + (Q1 + Q2)b% + w <

S Pr+(Qu+Q2)r* +w=Ro(r) <.
That completes the induction.

We now define the sequence {P,}, n > 1 by P, = R§*'(0)—~ R2(0), n > 1.
We will show that

(10) P, <(P+2(Q1+ Q2)r)"r, n>1.

For n = 1 we get
1
P, = R2(0) — Ro(0) = Ro(Ro(0)) — Ro(0) = Ro(w) — Ro(0) = / R (tw)wdt <
0

< Ry(w)w = (P +2(Q1 + Q2)w)w < (P + 2(Q1 + Q2)r)r.

That is (10) is true for n = 1. Assume that (10) is true for k = 1,2,...,n.
Then

Piyr = REY?(0) = REY(0) = RET(Ro(0)) — REY(0) = REY (w) — REY(0) =
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= Ro(Rb(w)) ~ Ra(R§(0)) =
1
= [ Ro(RE©) + t(Rb(w) — REO))(RE(w) ~ REO)dt <
0

Ry(Rg(w))(Rf(w) — Rg(0)) <
< Ry(r)(R§YH(0) — RE(0)) < (P +2(Q1 + Q2)r)*r.

That completes the induction. From (10) it now follows that {b,}, n > 1lis a
Cauchy sequence in a Banach space as such it converges to some b = R$°(0)
and b = R°(b). Since b, < r, then b < r. That is, b is smaller than any
solution d of the inequality Ro(d) < d. '

(b) Let us define the sequences {v,}, {gn}, n > 1 by vo = 0, vp41 = Ro(vn)
and ¢o = ¢, gn+1 = Ro(gn). By the monotonicity of Ry we get

0<v, <vn41 < gn41 < qn < g
We will show the estimate
(11) dn — VUn S’\"(q_vn), n > 0.

Inequality (11) is trivially true for n = 0. Let us assume that it is true for
k=0,1,2,...,n. Then

1
dn41 — Un41 = RO(Qn) - RO(U /R Un +t ‘In - Un))(‘]n - vn)dt <
0

1
(12) < [ Ro(un + ta = v))(a = )t = X" (Ro(g) = Ro(un) <
0

< /\n+l(q _ ‘U"+1).

The sequence {v,} is monotonically increasing and bounded above by gq.
Therefore it converges to some r < g. Since the sequence {g, — va}, n > 1
converges to zero by (12), the sequence {g,} must also be convergent and
bounded above by r. This completes the proof of the lemma.

We now state and prove a lemma concerning the solvability of the fixed
point problems appearing in (4).
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Lemma 2. Let (E, (Z,K,||-|l,/-/)) be a generalized Banach space and

L € B(L) be a bound for L € L(E,E). If for y € E there exists ¢ € K such
that

Lg+/y/ <q and I"q—»o as k — oo
then e = T*(0), T(z) = Lz + y s well defined and satisfies

e=Le+y and [e/<Lje/+[y/<q

Proof. It is enough to show that {T™(0)}, n > 1 is a Cauchy sequence.
Using Definition 3 we obtain the estimate

JT*(0) - T*(0)/ =

= /(L ty L2y L ly b y) - (L ly+ Ly 4+ y)/ <
+k— k-2 —k
Ty + Ty Ty <

<L /y/+ L
Zﬂ+k_l FARREE + .. .+fk)(q —Zq) =fkq —fﬂ+kq <L¢g—0

<( +L
as k — 0o. The lemma now follows immediately from the above estimate.
We can now formulate the main result.

Theorem 1. If (F, Xo) € C(r, P,Q1,Q2) then

(a) the iterative procedure (3)-(4) is well defined and the sequence {zn}, n > 0
produced by it converges to a unique fized point z* of G in U(zo, 7).

(b) An a priori estimate is given by the null sequence {r,}, n > 0 defined by
ro — r and r, = P§°(0), where

Pa(9) = Pg+(@Q1+Q2)(r—rn-1)g+ Q1721 +Q2(ro—"n=1)Tn=1, n > 1.

(¢) An a posteriori estimate is given by the sequence {dn}, n > 1 with

d" = Rgo(o))

Ra(g) = Pg+(Q1 + Q2) (Z aj) g+ Qirh_ + Q> (Z a,.) (an-1),

j=0 j=0
where an_y = [zp - 2p_1/, n > 0.

Proof. Using induction on n we will show the statement:
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(Sn) zn € E, r, € K are well defined and satisfy

Tn+an_1 < Th_i, n>1

By Lemma 1, (7) and (9) there exists ¢ < r such that
Pq+ /F(z0)/ =q and PYq< P¥r—0 as k — co.

By Lemma 2 z; is well defined and ag < ¢q. We now have

(13)
Pi(r—q)=P(r—q)+(Qi+Q2)(r—r)(r— ) + Qir’ + Qa(r —r)r =
= Pr—Pq+ Q17> = Pr+ Qi7"+ /F(z0)/ —¢ < Ro(r) —q¢<r—gq.

Using Lemma 1 and (13) we get that r; is well defined and
rn+a<r—q+q=ro.

That is, the statement (S;) is true. Assume now that (S;), (S2),...,(Sa) are
true. Let us observe that

Pr, + (Ql + QZ)(T e rn)rn + Ql(rn—l - rn)z + QZ(" - rn—l)(rn—l - rn) <

< Pnra < 7n.

Using Lemma 1 we can find ¢ < 7, such that

(14) ¢ = Pg+(Q1+Q2)(r—rn-1)g+Q1(rn—1-7n)?+Q2(ro—Tn-1)(Tn-1—Tn)-

We also have that

n—1 n-1
tn = [zp — 20/ < Zaj < Z(rj—rj+1)=r—r,, <r
j=0 i=0

That is, z, € U(zo,7) C D. Let us note that for all n > 1 (5), (6) give

[F'(F(zn))y/ < /(I = F'(z0))y/+
+/(F'(x0) = F'(zn))y/ + [(F'(zn) = (I = F'(F(z4)))y/ <

SP/y/+Q1(tn,/y/)+Q2 (Z/fj —3j_1/,/y/) <

i=1

< P/y/ 4+ Qu(r —1n, /Y/) + Qa2(r — 10, //)-
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That is, the operator P + (Q1 + Q2)(r — 75) is a bound for F'(F(z,)), n > 1.
Moreover, using (5), (6) and the induction hypothesis we get

(15)
[F(zn)/ < [F(zn) = F(zn-1) = F'(2n-1)(zn — Tn-1)/+

+ /(F'(zn-1)(I = F'(F(zn-1)))(zn — 2n-1)/ <
< Q1(/Tno1—2a/?) + Q2 (i /i = 1‘;‘—1/) (/&n-1—2n/) <
ji=1

< Ql("'n—l - rn)z + Q2(7° - rn—l)(rn—l - 1‘,,).
By (14) and (15) we get
PQ+ Qi1+ Q2)(r—rn)g+/F(za)/ < g

Hence, by Lemma 2, 2,4 is well defined and a, < ¢ < rp.

As in (13) it is simple calculus to show

Payi(rtn —q¢) < Pa(rn) —¢<rmn—q.

By Lemma 1 r,, 4 is well defined and '

7‘n+1+anS7‘n—lI+‘I:7'n~

Hence (Sp41) is true. For m > n we get

m m
(16) [Tmtr =T/ <Y a; <Y (rj = 7i41) =T = Tmi1 < 7o

j=n ij=1

Moreover,
Tat1 = Pogi(rng1) <

< Pagi(rn) S (P+2(Q1 4 Q2)r)ra < ... < (P4 2(Q1 + Q2)r)" .

By (9) the sequence {r,} converges to zero. Using (16) we derive that the
sequence {z,} is a Cauchy sequence in a Banach space and as such it converges
to some z* € E. Let m — oo in (16) to obtain z* € U(z,,7,). From (15) we
get that z* is a fixed point of G by letting n — oo. The uniqueness of z* in
U(zn,rn) follows easily as in [7, Theorem 4.1]. Thus we have shown (a) and

(b).

To show (c) note that the sequence {d,} is well defined by Lemma 1, since

Rp(rn) < Pp(rp) < 7p.
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Hence, d,, < r, in general. We can easily show that using (16) that

(F,z0) €C (dm P+ (Q1+Q2) (Zaj) , @1, Qz) .

ji=1

Hence by (a) z* € U(z,,d,) which shows (c). That completes the proof of the
theorem.

For practical purposes the a posteriori estimate is of interest mostly.
Condition (9) can be avoided then. In particular, following the techniques used
in Lemmas 1, 2 and Theorem 1 we can easily prove the following theorems.

Theorem 2. Assume
(a) the conditions (5) and (6) are satisfied;

(b) there ezistd € K, A € (0,1) such that

Ro(d) = Pd+(Q1 + Q2)d* + /F(z0)/ < Ad;

(c) the ball U(zo,d) C D.

Then there ezists r < d such that (F,zo) € C(r, P,Q1,Q2). The fized point
z* of G is unique in U(zo,d).

Theorem 3. Let the conditions of Theorem 1 be satisfied. Ifd € K solves
Ra(d) < d then ¢ =d —a, € K and solves Rp41(q) < q.

Remarks. (a) Note that this solution might be improved by Rk, () < ¢
for any k € N.

(b) In case of a real-normed space (i.e. Z = R) by (5), (6) an operator
norm P € R > 0 and Lipschitz-constants @,,Q2 € R > 0 are defined. The
condition (6) becomes a real quadratic inequality then and the smallest solution
is used [1]-[5], [9]-[12].

(c¢) The motivation for (6) comes from conditions of the form

[P(zn)y — Any/ < Q2 (QZ lzj — zj-1] +vn = B, |y|) )
j=1

where o € Rt, v,,8 € K for all n > 0, which were introduced for the real

norm theory (see e.g. [4, p.431] and the references there.

(d) Let ¢, denote upper bounds for the distances |zp4+1 — zn|, n > 0, where
{zn}, n > 0 is the corresponding Newton-sequence which was produced to
approximate a fixed point z* of (1) in [8, p.251]. Then it can be easily seen by
induction on n (see also relevant work in [1], [9]) that if r¢ is sufficiently smaller
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than ¢g, then r, < ¢, for all n > 0. That is Stirlings’s method converges faster
to the same fixed point z* of (1) than Newton’s method (assuming that we
start from the same initial guess z).
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