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1. Results

Let h(m) be a real-valued additive function,

k 2k \ /2
An=Y M), B(z)=(zﬁii’—)) ,

pr<z pr<r P

where p denotes a prime number and k > 1. Put I(...) for the indicator of the
set of natural numbers m satisfying the conditions written in the parenthesis.
In the present paper we consider the conditions when there exist distribution
functions v(v) and p(v) such that

(1) ve(v) := 2]} Z I(h(m) — A(z) < vB(z)) = v(v)
m<z
1\~ 1
(2)  pz(v):= ( > -,,;) 3 et (h(m) — A(z) < vB(z)) = p(v).
m<z m<z

Here and in what follows we suppose that B(z) — oo, the notation = denotes
weak convergence of bounded nondecreasing functions, and the notation of the
limiting passage z — oo is omitted.
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In the first problem only the case of the improper limiting distribution
concentrated at v = a (denoted in the sequel by E4(v)) has been investigated
completely (see Ruzsa [16]). In the second problem, in addition to the law
of large numbers (see Levin and Timofeev [9]), we have solved (Manstavicius
[14]) the case of the limiting distribution having the zero mean and the unit
variance. Now we shall summarize our results announced in several contri-
butions (Manstaviéius [10-13]), the theorems from the papers (Manstavicius
[14], Timofeev [20]) will be generalized, and their proofs will be simplified
considerably.

It seems likely that the conditions necessary for (1) or (2) with proper dis-
tribution functions v(v), p(v) should contain the existence of a nondecreasing
bounded function K(w) such that

2
3) E% ) "T@:K(w), K(-o00) = 0.
"(P),(S‘:B(f)

Moreover, on the contrary to the theory of distribution of independent random
variables, these conditions should involve (explicitly or not) the relations

@  vew= 2D Ly, )= FE e,

valid uniformly in u belonging to any closed interval of the half-axis (0, 00),
where ¥(u) and ¢(u) are continuous functions. Then we had (see, Levin and
Timofeev [9]) their expressions

(5) Yw)=c@w-1), ou)=v,

where ¢ € R and p > 0 (¢ = 0 when p = 0).

Now the following question arises: what does the constants c and p control?
The role of the limiting distribution should not to be overrated because we can
have the standard normal limit distribution for v;(v), when p =0 or p = 1/2
(see Timofeev [21]). As our result in (Manstavi¢ius [14]) shows, the situation
with p.(v) is pretty different.

We have observed the quantities determining ¢ and p. Denote

1 z h(p*) log p*

oy = ———— . ,
B(z)logz o P

5 1 > h2(p*) log p*

" B2%(z)logz = Pt
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Definition. An additive function h(m) belongs to the class H(a) if ay —
— a; h(m) belongs to the class H(a, ) if a; — a and B, —

We have |a| < min {1/v/2,+/B} and 0 < B < 1. The celebrated Kubilius
M class (Kubilius [5]) agrees with %(0,0). As we shall see, in the case of
the standard normalized additive functions the condition h(m) € H(a,pB)
substitutes for the following relation

1 log p
gz 2 p T

A(p)< ‘B(-')

where F(u) is a distribution function, used in the paper (Levin and Timofeev
[8]), or the condition (3) in Theorem 18.1 (Elliott [1]).

In the paper (Levin and Timofeev [9]) the problem of joint convergence
of vz(v) and p.(v) has been solved. We modify this problem considering the
weak convergence of either of the sequences together with convergence of some
sequences of moments.

For a distribution function F(v) put

a(F) = / vdF(v), o(F)= / v dF(v).

We have a(v;) = o(1), o(vz) < 3/2+ o(1) (see Kubilius [6], [7]), and a(uz) =
= —ay+0(1), o(ps) < €7 +0(1), where v denotes the Euler constant (corollary
of the estimate (13) in (Manstaviéius [14])). Therefore the limiting distributions
v(v) and p(v), when they do exist, will have the first two finite moments
satisfying the following relations

a(v) =0, o(v) < liminfo(v;) <3/2,

a(w) = —a,  o(w) <liminfo(us) S€7,  a(w)? < o(n).

The first part of the following theorem will consider a special case of
Theorem 1 of the paper (Levin and Timofeev [9]).

Theorem 1. Let the conditions (3) and (4) be satisfied. Then
i1) vz(v) = v(v) and pg(v) = p(v);
i2) h € H(a, B), where

1 1
a=—/¢(u)du=—a(u), ﬂ=1—/¢’(u)du<1;
0 0
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i3) p(u) = uP/20-P) y(u) = 0if B = 0 and ¥(u) = a(2-B)/B(vP/?(1-F) —1)
ifB#0;
i4) o(p)—(2-0)a(p)? = (1-P) o(v), where a(u) # 0 if and only if K(+00) >
>0;
i5) o(vz) = o(1) if and only if a? = 1/2.
Suppose h(m) € H(e, B) and v;(v) = v(v) # Eo(v). Then the conditions
(3) and (4) are satisfied and, in addition to the relations i,)—i4), we have
o? = a(p)? < 1/2 and o(p) # (2 - B) a(n)*.
Thus, considering the necessity of the conditions (3) and (4) there is no
need to take p,(v) = pu(v) # Es(v) in advance. The influence of the moment
convergence shows following results.

Theorem 2. In order that v;(v) = v(v) # Eo(v) or uz(v) = p(v) #
# Eq4(v) jointly with

(6) U(V,,-) —01>0, a(l‘z) —a, 6([1,) —02>0

it is necessary and sufficient that the condition (3), where K(+o00) > 0, and
the condition (4) be satisfied. Under these conditions the formulae (5) are true,

heH(, 3%5),

— 2p? (=1)
) op=1+4+2 p;(r+p)2.1:];( )

o1 2a%(1 + p)

-
® a= 2= Tx2p) T (42p)

p+1’

Moreover, the case a =0, 0, =02 =1 occurs ifand only if p =0, ¢ = 0.

Remark. Considering pz(v) = p(v) # Eq(u) the second of the relations
(6) is superfluous.

Corollary 1. In order that v;(v) = v(v) # Eo(u) or pz(v) = p(v) #
# Eq4(u) jointly with

9 a(ps) =0, o) >0 >0
it is necessary and sufficient that the conditions (3) with K(+o00) > 0 and

(4) with Y(u) = 0, p(u) = u(*=2)/2? 0 < ¢ < 1, be satisfied. Under these
conditions o(v;) — 1, too.
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Corollary 2. (Manstavi¢ius [14]). In order that p.(v) = u(v) with
a(u) = 0 and o(p) = 1 it is necessary and sufficient that h € H(0,0) and the
condition (3) with K(+00) = 1 be satisfied.

Sometimes the behavior of moments is given indirectly. In part it is shown
by the following theorem.

Theorem 3. Let ¢ > 0 be arbitrary, the star x denote the condition
h(p) < —eB(z), and

_ 1 * logp
L= B(z)logz Z P —0.

p<z

In order that v, (v) = v(v) with o(v) = 1 it is necessary and sufficient that
h € H(0,0) and the condition (3) with K(+00) = 1 be satisfied.

In order that v.(v) = v(v) # E4(v) jointly with o(v;) — 1 it is necessary
and sufficient that h € H(0,0) and the condition (3) with K(+o00) > 0 be
satisfied. Under this condition o(v) = K(+00).

This result in the case of the standard normal law has been announced by
N. M. Timofeev ([20]). His rather complicated proof is presented in the thesis
([23]). Later a new attempt has been done (Timofeev [22]). We follow the
idea of P. D. T. A. Elliott given in Supplement of the book [2]. Our criticism
concerning the original calculations is expressed in Concluding remark at the
end of this paper.

2. Proofs

Our approach is based upon relations of the sequences of distribution
functions v;(v) and pz(v). On the contrary to the paper (Levin and Timofeev
[9]), we do not use their joint convergence in advance. We observe that either
of them is relatively compact. Further, adding other conditions we prove that
the convergence of one of the sequences implies that for the other one. Thus,
then the result of (Levin and Timofeev [9]) can be applied.

To consider the relative compactness as well as features of the normalizing
sequences A(z) and B(z), we shall apply Lemmas from our paper (Manstavi¢ius
(14]). While the proof of Lemma 1 [14] has been then omitted, having this
opportunity we present it in more abstract setting influenced by the Ruzsa’s
paper [18]. That is motivated by our future plans, too.
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Let G be a commutative metric group with respect to additively written
algebraic operation. Put d( ., .) for the metric and ||g|| = d(g,0). We consider
the asymptotic distribution of additive functions f : N — G. In the set M(G)
of probabilistic measures defined on the Borel o-algebra B(G) of the sets of G
we introduce the Lévy—Prokhorov metric

L(m,m) = inf{e | m(4) < m(A) +¢, ma(4) < m(4%) +&; A€ BE)},

where A® denotes the eneighborhood of the set A, and 9,72 € M(G). Let
further, U, denote the sneighborhood of the zero element,

A(m)=inf{e+n(0)|e>0}, neM(9), U=6\U..

The total variation of the signed measure A will be denoted by |A|. Denote by
§(v) the unit mass at a point v and § = §(0). Put

6, =[y]™' )_ 6(f(m) - ),
m<y

where the function f = f;, g =9 € G, and y = y, — 00 as £ — oo.
Lemma 1. Let z = y'*t% |u| < 1/5, 5 = y\/m, y>3,
1 5(h
R= E =, Ty=R_l E ((p))
y1<p<y P ni<psy P

Then
L(8y,8;) < A(ry) + R7'/2,

where the constant implied is absolute.

Let t* = min{|t|,1} sgnt, where t € R. In the notations of Lemma 1 we
obtain

Corollary. We have

«2\ 1/3
L(e,,,e,)<R—1/a(ZI|f(p)ll ) LR

p<y P

In the case G = R having in advance a limiting distribution for the values
fz(m) — 7z, vz € R, we can derive the boundedness of the sum in the last
estimate, when f(p) is replaced by f(p) — Az logp with some A; € R. Then
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applied for fz(m)—v; — A; log(m/z) Corollary is quite useful. Lemma 2 below
shows only one of its applications.

Proof of Lemma 1 is based on A. Hildebrand’s arguments (see Lemma 4
in (Hildebrand [3])).

Observe that it is sufficient to deal with the case 0 < u < 1/4 only. Later,
in the case —1/5 < u < 0, one can use the inversions z — y and y — z. For

0<u< log'a/ 2y our estimate follows from the simple inequality

(z—y+1)'

(10) 18, - 8y| < [v]

In that follows we suppose log_s/ y<u<l /4 and y sufficiently large. Then

1 - . -
(11) R - # < (Vulogy) '« min{u'/¢, log lMy} .

We start with an averaging of ©,. For an arbitrary b, € C, 1 < m < z, we
have the inequality (see Chapter 4 in Elliott [1])

2
Yol 3 bm—%me <y lbml.
p<y m.".',f,‘éd, m<y m<y

Applying it for b, = I{f(m) € A + g} with arbitrary set A C G we obtain

DN (e,,,,, (A= f(p) - 9,,(1‘0)2 <1.

y1<p<y

Now the Cauchy inequality yields

(12) Oy(A) =R Y p'0y(A- f(p) + BRT'/Z.

y1<p<y

Here and in what follows B denotes some quantity bounded by an absolute
constant C > 0 (in different places we shall not use indices). Hence for the
probabilistic measure

Ey = R Z P—leylp

y1<p<y

we obtain

(13) L(®y ,5,) € A(ry) + R™Y/2.
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Let us repeat our considerations with ©, taking z; = y‘/'_"“‘ instead of the
previous y;. If 7, is defined from 7, substituting y — z and y; — z;, via the
estimate (10) and

— l_ 1+u B _ 1/6
(14) Ri:= ) p-logu+\/t-‘+\/mogy—R+Bu

21<ps2

we have |1, — 7,| € R™!. If E, is obtained from Z, after these substitutions,
then the same calculations as in the proof of (13) yield

(15) L(©.,Z,) € A(ry)+ R™/2.

In the next step we shall obtain the integral representations of the measures
Z: and E,. All the estimates will mean the estimates of the total variations of
the signed measures. Since the primes p € (,/¥,y] contribute to E, the term
BR™! only, we divide the interval (y1,./y] by the points w = w; := (1 + u)*,
k=0,1,.... For the typical interval (the last one may be incomplete) in virtue
of the prime number theorem with logarithmical error term and (10) we have

> P70y = (O + Bu)u (1 + Bu)(r(w(l + v)) - 7(w)) =
w<p<w(l4u)

w(l4u)
_ (ey/w + Bu)u _ / ey,, + Bu dt
logw tlogt

w

Therefore summing these estimates with respect to k¥ and adding one with
respect to the interval (\/3_/ ,y) we obtain

y/in

Yy
©y/1 + Bu ()
5, =R [ 2L a4 BR“:R"/ ‘—dt+BR.
v / tlogt + t logy/t +BR

Y1

Similarly, using the points z;(1 + u)*, k > 0, we deduce

z/z

©
= = -1 t -1
=, = R /—t oy 7s U+ BRI
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Hence and from the estimate (11), (14) in virtue of y/y; = z/2z; we obtain

yln

- - _ logz/y dt _ _
Zy-Z:| <R ‘/———— R'<«R!.
=R gy T TS

Thus, in the case log‘s/ 2 < u < 1/4 the assertion of Lemma 1 follows from

(13), (15), and the last estimate.
Now we return to G = R. Proofs of Theorems are based on few elementary
observations.

Lemma 2. Suppose the proposition (1) or (2) is valid with a proper
limiting distribution. Then for each sequence y; — oo there exist a subsequence
y — oo, continuous functions yY(u) and ¢(u) given on (0, +00) and such that
the condition (4) is satisfied for the subsequence z = y.

Proof. In the case (2) the proposition has been proved in (Levin and’
Timofeev [9]). We shall consider the first case. The existence of a subsequence
y — oo such that ¢y (u) — (u) for u > 0 has been proved in Theorem 4
(Siaulys [19]). The arguments given on page 379 of this paper (in virtue of
p(n) = 0 there) yield, in fact, ¥, (u) — ¥(u), too. Observe that a possibility
to choose y — oo such that ¢, (u) — ¢(u) and ¥y (u) — ¥(u) is contained in
Lemma 3 of the paper (Manstaviéius [14]). Our idea can be seen in the next
step of the proof.

To prove continuity of ¥(u) and ¢(u), introduce

ve(u,v) = [z¥]7! Z I(h(m) — A(z) < vB(z)) .

m<z*

In what follows L(., .) denotes the Lévy metric in the distribution function
space. We have

L(u,,(u, Dov(.p(u) + t/;(u))) -0
as y — 0o. But then Corollary of Lemma 1 yields

L(v(- p(u+8) +$(u+86)), (- p(u) + ¥(v))) =0

as § — 0. Now by the well-known probabilistic lemma @(u + §) — ©(u) and
Y(u + 8) — Y(u) as § — 0. Lemma is proved.
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Lemma 3. Let for a subsequence z = y — oo the relations (4) with some
continuous functions ¥ (u) and ¢(u), u > 0, hold. If h(m) € H(«), then almost
everywhere in the Lebesgue sense

(16) ¥ (u) = a(¢ (w) + £ ))

If h(m) € H(a,B), then the functions ¢(u) and ¢(u) do not depend on the
subsequence y — oo, the formulae (5) are valid with p = B/2(1 - ), B < 1;
c=0iff=0andc=a(2—P)/Bif B#0.

Proof. While ¢(u) is continuous and nondecreasing, it is differentiable
almost everywhere. Further, summing by parts we have

A(y**?) - A@*) =

— 1 h(P) IOSP / h(p)logp dt
T (u+A)logy E E p tllogy’

y-<p<y-+A -<p<yl
- u

where 0 < u — |A| < u+ |A| < 1. Dividing by B(y) and letting y — oo we
derive

Yot A) ~ Y(w) =alp(u+ A) — (W) + p(u+ A) "t

o) d A
p(t)dt
+a/ ; atp(u)u+A.

u

Now dividing by A and letting A — 0 we obtain (16) almost everywhere in u.

Summation by parts (here and in what follows we do not indicate trivial
estimates to be done at first in order to avoid the influence of the zero
neighborhood) applied in the definition of 3, yields

(17) g=1- /qp2(u) du
0

which in virtue of ¢(1) = 1 implies § < 1. The same idea as earlier leads to
the relation

u+d

1-D+)-pw)=s [ Cla,

u
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which gives the desired expression for ¢(u). Further, solving (16) we use the
condition (1) = 0. Lemma 3 is proved.

Lemma 4. Let for a subsequence z = y — oo the relations (4) with some
continuous functions ¥(u) and p(u), u > 0, hold. If a(p:) — a, o(vz) — 04,
o(p) — o2 > 0, then the functions y(u) and p(u) do not depend on the
subsequence y — oo and the formulae (5) are true. We have two possibilities:

i1) p=0,c=0ifandonlyifa=0,0y=02=1;

i) p=2atai=aa 50 o= _g_gate_ 2%+ 0, —03>0.

2(03-a2 —0202'0'01—0: ’

Proof. At first we observe that the condition a(u;) — a implies h €
€ H(—a) and by Lemma 3

¥ =-a(vw+22).

almost everywhere.
Let £, 0 < € < 1, be fixed and ¢ < v < £71. In virtue of a(v;) = o(1) and
¥z(u) < |log u|l/2 summing by parts we obtain

v

3w (h(m) = A=) = 0) + v [ o(ven)eE(u) dust

m<z¥

1
B2(z)vlogz

€

+v7! / V2 (u) du — 24, (v)v? /,p,(u) du + Y2(v) + 0, (2(e71)) .

Applying it for the subsequence y — oo we deduce the equality

v

(18) aavp?(v) = al/qu(u) du+/¢2(u)du - 211:(1))/1,/)(14) du + vy (v),
0 0

0

which together with the differential equation above leads to the following
system of equations for ¥ = ¥(v) and ¢ = (v):

vy = —avy’ — ap

20,vp¢" = (01 — 02)p? + 2vyy’ — 2¢"_({¢(u) du,
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when (1) =1 — 9(1) = 1. The system easily reduces to

vy = —avyp’' —ap
2(02 — a®)vy’ = (01 — 02+ 2a%)p.

Observe that the factors on the left side of the second equation are nonnegative.
If o2 = a2, then o, = a2 = 0, which contradicts to the condition o2 > 0. The
equality g; — 02 + 2a? = 0 yields the solution ¢(v) = 1. Further, having a = 0
we obtain ¥(v) = 0. In this case h € H = H(0,0), hence 0y = 1 = 02. When
o1 — 02 + 2a? > 0, the only solution of the system is given in Lemma. That
ends the proof.

In the sequel we shall use the following corollary of the Hildebrand’s result
(4]-

Lemma 5. If h € H(0), then o(v;) = 1 + o(1). If the conditions (4) and
(5) are satisfied, then o(v;) = o1 + o(1), where o, is given by the formula (7).

Proof. According to Theorem (Hildebrand [4]) we have

S)
o(vg) = (1 + ﬁ + ok(1)> Vi(z). o] <1,

where

k . k
Vi(z) =1+ E w + ok(1) + o (Z /\:(r)) ,
r=1 r=1

’\s(r) — Z h(p)lrz(p) ,

i pB(z)

lo
lz(p) = ¢r (log) , ¢r(t) =tg,—1(t), reN.

Here g,_1(t), r € N, denote the sequence of orthogonal polynomials in the
interval [0, 1] with the weight ¢, that is,

gr_1(t) = (2r)/2P10(1 — 2t) =
r-1

- (2,.)1/2'2_5 (": 1) (:) (=)=l —t), r> 1.

8=0
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While a; — 0 implies Az (r) — 0, the first assertion evidently follows from
the Hildebrand’s formulae above.

Further, since |Az(r)| < 1 (see [4]), the last term in the formula for Vi(z)
tends to zero. We shall prove convergence of the main term as z — oo and
then convergence as k — o0o. All we need for this purpose is to prove that
Az(r) = A(r), to find these limits, and to verify that A%(r) < A%(r—1), r > 1.
As in the proof of Lemma 3 summing by parts we have \;(1)/v2=a; = a =
= ¢p/(p + 1) and, further for r > 2,

1
M) =a [ graO(0r) de+of1) = (19)
0

= cp(2r)1/2§ (’; 1) (:)(-1)'-‘-' /lt"'-“" (1-t)’dt+o(1) =

— 1 ~(r-1\/(r re1—s T(r+p—95)T(s+1) _
= cp(2r) /2;( : )(s)(_n D)o -

= cp(20)2(r + p)~ 2:) (=1)r-1- (": 1) (:) (" - 1“‘ ")—1 +o(1).

Applying the summation formula 35.3 on page 633 of the book (Prudnikov et
all [15]) we have

e (A | () B0}

r

If cp = 0, the assertion of Lemma 5 has been just proved. If cp # 0, r > 1+ p,

then 12 12
A(r) _(_r r—l—p<(r—l <1
A(r—1) r—1 r+p r

Now since klim lim Vi(z) = 01, Lemma 5 is proved.
—00 T—00

Proof of Theorem 1. The existence of limiting distributions is given
by Theorem 1 of the paper (Levin and Timofeev [9]). As in the proof of (17),
the assertion i3) follows by partial summation. Then Lemma 2 implies i3). To
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prove i4), we shall consider the relation between the characteristic functions
f(t) and g(t) of distributions v(v) and p(v)

vf (tp(v)) () = / 9(te(u))e*v™ du,

which easily can be obtained by partial summation (see, Levin and Timofeev [9],
p- 340). As we have remarked, the limit distributions have two finite moments,
hence f(t) and g(t) are twice differentiable. So we obtain

vf' (te(v) p(v)e¥®) 4 ivf(t¢(v))¢(v)e“¢(") -

= / (¢ (b)) @(0)e ) + ig(t(w) $(0)e ) du.

0

When t = 0, this is the same differential equation (16). Applying it in equality
for the second derivatives at the point ¢t = 0, we deduce

(#*() (e(w) — a(w)?) = ¢*(v)(o(¥) + 20(w)* ~ o(w)) -
Hence and from i3) we have the relation
B(o(k) = a(w)?) = (1 = B)(o(v) + 2a(n)* — o(n)) ,

which is the same as that in i4). The condition o(u) > 0 has been observed in
(Levin and Timofeev [9]).

The following Ruzsa’s estimate (see, [17])

pk

a(u,)xrgleig pLe Z =1-2a2 +0(1)

pk<z

implies i5).
In order to prove the converse statement, we apply Lemmas 3 and 2.
Further we can use the proved part of Theorem.

Example of the function h(m) = logm shows that ¥(v) = Eq(v) does not
imply p(v) = E,4(v) for some a € R. For this function p(v) exists, a(u)? = 1/2,
and o(p) = 2/3.
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Proof of Theorem 2. The existence of the limit distributions v(v) and
u(v) follows from Theorem 1. Formula (7) has been obtained in Lemma 5.
While a(pz) = —az + o(1), the first of the formulae (8) follows from i) of
Theorem 1. The desired expression for o5 is presented by (18) when v = 1.

Necessity follows from Lemmas 2 and 4.

Proof of Corollary 1. Only the necessity is not evident. By Lemma
2 for an arbitrary sequence y; — oo we have a subsequence y — oo such
that ¢y(u) — ¥(u) and @y(u) — (u), where 1(u) and p(u) are continuous
functions. The first assumption of (9) implies h € H(0). Hence ¥(u) =
independently of the sequence y; — oo and, further by Lemma 5, o(v;) — 1.
Thus, the desired result follows from Theorem 2, the exponent p is determined
by the formula (8).

Proof of Corollary 2. Behaving as in the proof of the first Corollary we
obtain ¥(u) = 0 and o(v;) — 1. To determine yp(u), we apply the relation (18)
but obtained using the subsequence y — oo only. We have

1
L=o(u) < fim o) = [P@dusl.
y—oo
0

Hence ¢(u) = 1, and Corollary is proved.

Proof of Theorem 3. Sufficiency is well-known (Kubilius [5]). To prove
necessity, we denote

S = B-z(z) Z M .

P9

P, g<x
Py>x

The Cauchy inequality yields the estimates

1/2
B—2(z) Z (p) (q) <e Ep( Z l) Le

q
p q<x, pg>= <z <
n(P)I<eB (=) Ps #/p<es=

and

1/2
B-2(-‘B) Z * h(pph(q) (Z* 1 z ) <

p,4<z,pe>z p<z z/P<q<t

1/2
* log = *x 1 _
< ( Z log logz — log p * Z P) T =ofl),

p<VT Vz<p<s
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where as earlier x stands for the condition h(p) < —eB(z). Hence

Sy = B—Z(z) Z h(p)h(Q) + 0(1) .
A
But (see Kubilius [6], [7] or Hildebrand [4]) o(vz) = 1—Sz+0(1), thus, observing
that either of the assertions of Theorem 3 yields o(v;) = 1 + o(1), we obtain
Sz = o(1) and, further,

2
) <S:+0(1)=0(1).
‘(‘%’E‘: pB(z) | ~

Now repeatedly changing z to \/z and using the condition of Theorem once
more we obtain

Y l&IT 4o (1) = 0ns(1)
8 <p< P
NP2 B ()
for each ¢ > 0 and 0 < § < 1. It means that the function h is of the
Kubilius type (see Ruzsa, [18]) and one can apply the Kubilius truncation
procedure ([5]). Corresponding limit theorem for the sum of independent

random variables §,, p < z, normalized by A(z) and B(z), implies the condition
(4). Theorem 3 is proved.

3. Concluding remark

Corollary 3 in (Hildebrand [4]) asserts that o(v;) = 14+0(1) implies ¥(u) =
=0, 0 < u < 1. That in the special case can be seen from our Lemma 5. The
Hildebrand’s proof is based upon the equality

/ 5 MO, 5 Kok /Q "
P

IXTE M P, q<x
pa>st Pad>s

and Q =
example h(p) = 1 shows. It should be Q = mm{

which is false as the

1} but then the

logz + logz )

where P = max{lo” , losz

logz log z)
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approach fails. The mistake was repeated in Supplement of the book (Elliott
[2]), therefore we could not use these calculations directly.

In connection to the problems considered in the present paper it would
be very desirable to obtain necessary and sufficient conditions for the relation
o(vz) = 0 + o(1). Is it true that sup limsupo(v;) <17

h#0
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