NUMBER SYSTEMS IN IMAGINARY QUADRATIC FIELDS

I. Kátai (Budapest, Hungary)

Dedicated to Professor Karl-Heinz Indlekofer on his fiftieth birthday

1. Introduction

Let $Q(i\sqrt{D})$ be an imaginary quadratic extension of Q, I be the set of integers in $Q(i\sqrt{D})$. Let $\alpha \in I$, $\alpha \neq 0$, and $\alpha \neq$ unit. Let $F = \{f_0 = 0, f_1, \ldots, f_{t-1}\}$, $t = |\alpha|^2$ be a complete residue system $mod \alpha$.

Then, for each $\beta \in I$ there exists a unique $a_0 \in F$ and a unique $\beta_1 \in I$ such that

$$\beta = a_0 + \alpha \beta_1.$$

The function $J:I\to I$ is defined by $J(\beta)=\beta_1$. Observe that for $K=\max_{f\in F}|f|$ we have

The inequality (1.2) implies that for every $\beta \in I$ the path, defined by iterating J:

$$\beta$$
, $\beta_1 = J(\beta)$, $\beta_2 = j(\beta_1)$,...

is eventually periodic.

Some $\beta \in I$ is said to be periodic (with respect to this expansion) if there is some integer k > 0 for which $\beta = J^k(\beta)$ holds.

Let P be the set of periodic elements. The following assertions are obvious:

- (1) $0 \in P$;
- (2) (F, α) is a number-system (NS) if and only if P is singleton, $P = \{0\}$;
- (3) If $\Pi \in P$, then

$$|\Pi| \leq \frac{K}{|\alpha| - 1};$$

- (4) If $\Pi \in P$, then $J(\Pi) \in P$. Let G(P) be the directed graph defined by $\Pi \to J(\Pi)$ for every $\Pi \in P$. Then G(P) is a disjoint union of circles;
- (5) If $\alpha 1$ is a unit in I, then no NS with base α exists, since for an arbitrary choice of F the elements $x_f = \overline{(1-\alpha)}f$, $f \in F$ are periodic with period 1.

To prove (1.3), assume that $\Pi \in P_1$, and $\Pi = \Pi_0 \to \Pi_1 \to \ldots \to \Pi_k (= \Pi_0)$. Assume that $\max_{\nu=0,\ldots,k-1} |\Pi_{\nu}| = |\Pi_0|$. Apply (1.2) with $\beta = \Pi_{k-1}$, $\beta_1 = \Pi_0$. (1.3) it follows immediately.

In our paper [1] written jointly with B. Kovács we determined all possible bases for which (F^*, α) , $F^* = \{0, 1, ..., |a|^2 - 1\}$ is a NS.

The problem to determine all the possible coefficient systems F for which (F, A) is a NS, seems to be very hard. In the other hand, if F is given, to decide whether (F, α) is a NS or not, due to (1.3) is a simple task.

G. Steidl [2] proved that in the ring Z[i] of the Gaussian integers for every $|\alpha| > 1$ except $\alpha = 2$, 1 + i, 1 - i always exists a suitable coefficient set ζ_{α} by which (ζ_{α}, α) is a NS. She effectively constructed ζ_{α} . We shall extend her result to arbitrary imaginary quadratic fields.

2. Construction of the coefficient system

Lemma 1. Let $e, b, c, a \in Z$ be arbitrary integers, d = ae - bc, S be the matrix

$$S = \begin{bmatrix} e & -b \\ -c & a \end{bmatrix}.$$

Assume that $d \neq 0$. Then there exists a unique set $F = \{\underline{f}_{\nu} : \nu = 0, 1, \ldots, |d|-1\}$ of integer vectorials in \mathbb{Z}_2 , such that

$$\begin{bmatrix} r_{\nu} \\ s_{\nu} \end{bmatrix} := S f_{\underline{\nu}}$$

satisfies the following conditions:

(1)
$$r_{\nu}$$
, $s_{\nu} \in \left(-\frac{|d|}{2}, \frac{|d|}{2}\right]$;

(2) $r_{\nu} \equiv r_{\mu} \pmod{d}$, $s_{\nu} \equiv s_{\mu} \pmod{d}$ cannot hold simultaneously for $\nu \neq \mu$.

Proof. This assertion is well known in number theory.

Remarks.

- (1) If d is odd, then F = -F.
- (2) If b=c=0, then F is of simple shape. Let k, resp. l run over the integers satisfying $-\frac{|d|}{2} < ek \le \frac{|d|}{2}$, $-\frac{|d|}{2} < al \le \frac{|d|}{2}$, respectively. Then F is the collection of all possible vectorials $\begin{bmatrix} k \\ l \end{bmatrix}$.
- (3) If e = a = 0, then F is of similar shape.

If $D+1\not\equiv 0\ (mod\ 4)$, then $\{1,i\sqrt{D}\}$, while for $D\not\equiv -1\pmod 4$ $\{1,\omega\}$ is an integral basis in I, where

$$\omega=\frac{1+i\sqrt{D}}{2}.$$

Let

$$E=\frac{1+D}{4}.$$

Let $D \not\equiv -1 \pmod{4}$, $\alpha = a + ib\sqrt{D}$, $d := \alpha \overline{\alpha} = a^2 + b^2 D$. We define $\zeta_{\alpha} := \{e = k + il\sqrt{D}\}$ to be those integers for which $r = \operatorname{Re} \overline{\alpha} e$ and $s = \frac{\operatorname{Im} \overline{\alpha} e}{\sqrt{D}}$ satisfy the conditions: $r, s \in \left(-\frac{d}{2}, \frac{d}{2}\right]$. Explicitly

$$r = ak + blD$$
.

$$s = -bk + al$$

From Lemma 1 we have that ζ_{α} is a complete residue system $mod\ d$. Since $\overline{\alpha}e = r + is\sqrt{D}$,

$$|d|e|^2 = r^2 + s^2 D \le \frac{d^2}{4}(1+D),$$

whence

$$|e| \leq \frac{\sqrt{d}}{2}\sqrt{1+D}$$
.

Consequently for $\Pi \in P$ we obtain that

(2.1)
$$| \Pi | \leq \frac{1}{2} \frac{\sqrt{1+D}}{1-1/\sqrt{d}}.$$

Let $D \equiv -1 \pmod{4}$, $\alpha = a + b\omega$, $d = \alpha \overline{\alpha} = \left(a + \frac{b}{2}\right)^2 + \frac{b^2}{4}D$. We define $\zeta_{\alpha} = \{e = k + l\omega\}$ as the integers for which $\overline{\alpha}e = (a + b)k + b lE + (al - bk)\omega = r + s\omega$ satisfies the conditions $r, s \in \left(-\frac{d}{2}, \frac{d}{2}\right]$.

Since

$$r + s\omega = \left(r + \frac{s}{2}\right) + i\frac{s}{2}\sqrt{D},$$

we obtain that

$$|r + s\omega|^2 = (r + \frac{s}{2})^2 + \frac{s^2}{4}D \le (\frac{3}{4}d)^2 + \frac{d^2}{16}D = \frac{d^2}{16}(9 + D),$$

consequently $|e| \le \frac{\sqrt{d}}{4}\sqrt{9+D}$, whence by (1.3) we get that

(2.2)
$$|\Pi| \le \frac{\sqrt{9+D}}{4(1-\frac{1}{\sqrt{d}})}.$$

3. Formulation of the theorem and simple cases

Theorem. Let α be an arbitrary integer in an imaginary quadratic extension field $Q(i\sqrt{D})$, such that $|\alpha| > 1$ and $|1-\alpha| \neq 1$ holds. Then (\mathcal{F}, α) is a NS with a suitable coefficient set \mathcal{F} .

Lemma 2. If $\alpha \in \mathbb{Z}$, $\alpha \neq -2, -1, 0, 1$, then (ζ_{α}, α) is a NS for every extension field $Q(i\sqrt{D})$.

Proof. If $\alpha \in Z$, then $\alpha = a + 0 \cdot i\sqrt{D}$ or $\alpha = a + 0 \cdot \omega$, $d = a^2$, $\zeta_{\alpha} = \left\{ \begin{bmatrix} k \\ l \end{bmatrix} \right\}$ for which l, $k \in \left(-\frac{|a|}{2}, \frac{|a|}{2} \right]$. Clearly we can expand each $v, u \in Z$ in a NS with base a and coefficient system $\left\{ v \in \left(-\frac{|a|}{2}, \frac{|a|}{2} \right] \right\}$. If $u = \sum k_t a^t$, $v = \sum l_t a^t$, then

$$\beta = u + iv\sqrt{D} = \sum_{t} (k_t + l_t Di)a^t,$$

$$\beta = u + v\omega = \sum (k_t + l_t\omega)a^t$$

are the corresponding expansions of the integers β in I.

Lemma 3. If $\alpha = ib\sqrt{D}$ or $\alpha = b\omega$, then (ζ_{α}, α) is a NS, except the cases $b = \pm 1$ for D = 1 and 3.

Proof. We can argue similarly as in the proof of Lemma 2. In the exceptional cases $|\alpha|^2 = 1$ $\zeta_{\alpha} = \{0\}$.

Lemma 4. Let $\Pi \in P$, $\Pi \neq 0$, $\Pi = p + iq\sqrt{D}$ or $\Pi = p + q\omega$, according to whether $D + 1 \not\equiv 0 \pmod{4}$ or $D + 1 \equiv 0 \pmod{4}$, where $p, q \in Z$. If $q \neq 0$, then

(3.1)
$$\left(1 - \frac{1}{\sqrt{d}}\right)^2 \le \frac{D+1}{4D} \quad \text{for} \quad D+1 \not\equiv 0 \pmod{4},$$

and

(3.2)
$$\left(1 - \frac{1}{\sqrt{d}}\right)^2 \le \frac{1}{4} \frac{D+9}{D+1} \quad \text{for} \quad D+1 \equiv 0 \pmod{4}.$$

Proof. From (2.1), (2.2) we have

(3.3)
$$p^2 + q^2 D \le \frac{D+1}{4(1-\frac{1}{\sqrt{d}})^2} \quad (=: R_{D,d})$$

(3.4)
$$\left(p + \frac{q}{2}\right)^2 + \frac{q^2}{4}D \le \frac{9+D}{16(1-\frac{1}{\sqrt{d}})^2} \quad (=:S_{D,d})$$

whence (3.1), (3.2) immediately follow.

Lemma 5. All the rational integers $e = k + 0i\sqrt{D}$ satisfying

$$\mid k \mid < \frac{d}{2} \min \left(\frac{1}{\mid a \mid} , \frac{1}{\mid b \mid} \right)$$

belong to ζ_{α} if $D+1\not\equiv 0 \pmod 4$. All the rational integers $e=k+0\cdot \omega$ of the interval

$$|e| \le \frac{d}{2} \min \left(\frac{1}{|a+b|}, \frac{1}{|b|} \right)$$

belong to ζ_{α} if $D+1 \equiv 0 \pmod{4}$.

Consequently if $p \in P$, then

(3.5)
$$\frac{d^2}{4} \cdot \frac{1}{\max\{a^2, b^2\}} \le R_{D,d}$$

for $D+1 \not\equiv 0 \pmod{4}$, and

(3.6)
$$\frac{d^2}{4} \cdot \frac{1}{\max\{(a+b)^2, b^2\}} \le S_{D,d}$$

for $D+1 \equiv 0 \pmod{4}$.

Proof. The assertions are obvious consequences of the definition of ζ_{α} .

4. Proof of the theorem for $D+1 \not\equiv 0 \pmod{4}$

We assume that $D \ge 2$. The case D = 1 is completely solved in [2].

Assume first that there is a real $0 \neq \Pi \in P$ for some $\alpha = a + ib\sqrt{D}$. If $1 \leq |a| \leq |b|$, then from (3.5),

$$\sqrt{d}(\sqrt{d}-1) \le \sqrt{(1+D)b^2} = \sqrt{\frac{(1+D)b^2 \cdot a^2}{\mid a \mid^2}} \le \frac{(1+D)b^2 + a^2}{2\mid a\mid} =$$

$$= \frac{d}{2|a|} + \frac{b^2}{2|a|} \le \frac{d}{2|a|} + \frac{d}{2|a|D}.$$

 $1 \le \frac{1}{\sqrt{d}} + \frac{1}{2|a|} + \frac{1}{2|a| \cdot D}$, which cannot occur if $D \ne 2$.

If D=2, then from (3.5), and from $3b^2 \le 1,5d$ we deduce that $d^2\left(1-\frac{1}{\sqrt{d}}\right)^2 \le 1,5d$, whence $d \le 4$ follows. Since d=4 implies that either b=0 or a=0, and these cases were treated in Lemmas 2 and 3, we can consider only the case d=3, |a|=|b|=1. We shall treat these cases later.

If |a| > |b|, then from (3.5),

$$\sqrt{d}(\sqrt{d-1}) \le \sqrt{(1+D)a^2} = \sqrt{\frac{b^2 + b^2D}{b^2} \cdot |a|^2} \le$$

$$\leq \frac{1}{2|b|} \{b^2 + d\} = \frac{d}{2|b|} + \frac{|b|}{2},$$

whence

$$(4.1) (2 | b | -1)d - 2 | b | \sqrt{d} - | b |^2 \le 0.$$

This inequality cannot be true for $d > X_b^2$, where

$$X_b := \frac{|b|}{2|b|-1}(1+\sqrt{2|b|}).$$

Since $x_1 = 1 + \sqrt{2}$, (4.1) could be held only for |a| = |b| = 1, d = 2. For $|b| \ge 2$ we have $d \ge b^2(1+D) \ge 3b^2$, and

$$3b^2 > \frac{b^2(1+\sqrt{2\mid b\mid})^2}{(2\mid b\mid -1)^2} = \frac{b^2}{(\sqrt{2\mid b\mid} -1)^2},$$

thus (4.1) cannot be true.

We proved the following

Lemma 6. Let $\alpha = a + ib\sqrt{D}$, $|\alpha| > 1$, $D \ge 2$, $D + 1 \not\equiv 0 \pmod{4}$, $a \ne 0$, $b \ne 0$. Then P does not contain real $\Pi \ne 0$ except perhaps the cases D = 2, |a| = |b| = 1.

Furthermore, computing $R_{5,6}$ and $R_{2,7}$ we obtain that (3.1) is not satisfied if $d \ge D + 1$ and $D \ge 5$ and for D = 2, if $d \ge 7$.

To finish the proof we have to consider only the cases |a|=|b|=1; |a|=2, |b|=1, D=2. If d is odd, then $\zeta_{\alpha}=-\zeta_{\alpha}$, furthermore $\zeta_{-\alpha}=\zeta_{\alpha}$, $\zeta_{\overline{\alpha}}=\overline{\zeta_{\alpha}}$, thus it is enough to consider one of $\alpha, \overline{\alpha}, -\alpha, -\overline{\alpha}$ in these cases.

Let $\alpha=1+i\sqrt{2}$. Then $\zeta_{\alpha}=\{-1,0,1\}$. Observing that $R_{2,3}<4$, we get that for $\Pi=p+iq\sqrt{2}$ we have $p^2+2q^2\leq 3$. Thus $|p|\leq 1, |q|\leq 1$. q=0 cannot occur since then $\Pi=p\in\zeta_{\alpha}$, and $J(\zeta_{\alpha})\to 0$. Thus $\Pi\in\{\pm i\sqrt{2},\,\pm 1\pm i\sqrt{2}\}$. But $J^2(\alpha)=J(1)=0, \quad J^2(-\alpha)=J(-1)=0$, furthermore $i\sqrt{2}=-1+1\cdot\alpha, \quad -i\sqrt{2}=1+(-1)\alpha, \quad \overline{\alpha}=-1-i\sqrt{2}\alpha, \quad -\overline{\alpha}=1+i\sqrt{2}\alpha$, and so all the candidates for P have finite expansions.

Let $\alpha = 1 + 2i\sqrt{2}$. Then d = 6,

$$\zeta_{\alpha} = \{0, 1, -1, i\sqrt{D}, -1 + i\sqrt{D}, 1 - i\sqrt{D}\}\$$

and $R_{2,6} < 3$, whence $p^2 < 3$, q = 0 should follow, thus $\Pi = p \in \{-1, 0, 1, \} \subseteq \subseteq \zeta_{\alpha}$, so this is a NS as well.

5. Proof of the theorem for $D+1\equiv 0 \pmod{4}$

In the whole section we shall assume that for $\alpha=a+b\omega$ the conditions $b\geq 1$, $a\neq 0$, $a+b\neq 0$ hold. If $(\mathcal{F},\ \alpha)$ is a NS, then $(\overline{\mathcal{F}},\ \overline{\alpha})$ is a NS as well. Since $\overline{\alpha}=(a+b)-b\omega$, and in Lemmas 2, 3 the cases a=0; b=0, consequently a+b=0 were treated it is enough to prove the theorem under the above conditions.

For short let \mathcal{L} be the set

$$\left(-\frac{d}{2}, \frac{d}{2}\right], \quad d = \left(a + \frac{b}{2}\right)^2 + \frac{b^2 D}{4} = a^2 + ab + b^2 E.$$

Assume that d > 1.

Lemma 7. Every rational integer k, $|k| \leq \frac{|a|}{2}$ belongs to $\zeta \alpha$.

Proof. We should prove that $k(a+b) \in \mathcal{L}$, $-bk \in \mathcal{L}$ holds for all k, $|k| \leq \frac{|a|}{2}$. If $|a+b| \geq b$, then (a+b)a > 0, consequently

$$\frac{|a+b||a|}{2} = \frac{a(a+b)}{2} < \frac{1}{2} \left(a^2 + ab + \frac{b^2 D}{4} \right) < \frac{d}{2}.$$

If |a+b| < b, then a < 0 and

$$\frac{|a|b}{2} < \frac{d}{2} = \frac{1}{2} \{a^2 + ab + b^2 E\}$$

is equivalent to $|a|b < \frac{1}{2}(a^2 + b^2 E)$, which clearly holds, since $E \ge 1$, $a \ne -b$.

Lemma 8. Excluding the integers $\alpha = -1 + 2\omega$, $1 + \omega$ in the case D = 3, and $\alpha = 1 + \omega$ for D = 7, for the others the expansion $(\zeta \alpha, \alpha)$ either has a nonreal periodic element, or it is a NS.

Proof. Assume in contrary that $P \subseteq \mathbb{Z}$ and there is a nonzero $p \in P$.

Let first b=1. If $p_1=J(p)$, then there is an $e\in \zeta \alpha$ such that p=e+dp, consequently $p\overline{\alpha}=e\overline{\alpha}+\alpha p_1,\ e\overline{\alpha}=r+s\omega,\ r,s\in\mathcal{L}$. Thus $(a+1)p=r+dp_1,$ -p=s, whence $p_1=\frac{(a+1)p}{d}-\frac{r}{d}$. Hence $|p_1|\leq \frac{|a+1|}{2}+\frac{1}{2}$. Since $p_1\notin \zeta\alpha$, from Lemma 7 we obtain that

(5.1)
$$\frac{|a|+1}{2} \le |p_1| \le \frac{|a+1|+1}{2}.$$

(5.1) fails for a < 0. Let a > 0. Then $|p_1| = \frac{a+1}{2}$ or $\frac{a+2}{2}$ according to the parity of a. So we have that $|p| = \frac{a+1}{2}$ or $\frac{a+2}{2}$ for every $p \in P \setminus \{0\}$. Then either J(p) = p or J(p) = -p, $J^2(p) = p$. In the first case $-r = (d-(a+1))p_1 = (a^2+E-1)p_1$, thus $\frac{d}{2} \ge (a^2+E-1)\frac{a+1}{2}$. This cannot hold with the exceptions E = 1 and 2, a = 1.

In the second case (J(p) = -p) we conclude that $\frac{d}{2} \ge |d + (a+1)||p_1|$ which is impossible for $p_1 \ne 0$.

Let $b \ge 2$. If $p_1 = J(p)$, then $(a+b)p = r + dp_1$, -bp = s hold with some $r, s \in \mathcal{L}$. Thus $p_1 = \frac{r+s}{d} - \frac{a}{d}p$, whence

(5.2)
$$|p_1| \le 1 + \frac{|a|}{d}|p| = 1 + \frac{|a||s|}{db} \le 1 + \frac{|a|}{2b}$$

Since $|p_1| \ge \frac{|a|+1}{2}$, and $\frac{|a|}{2b}+1 < \frac{|a|+1}{2}$, if b>2, or if b=2, and |a|>2, we should consider the cases b=2, |a|=1, 2. If |a|=2, then $|p_1|\ge 2$, and (5.2) cannot hold. If |a|=1, then from (5.2) $P\subseteq \{0,1,-1\}$. We shall prove finally that $1,-1\in \zeta\alpha$. This holds if $|a+b|<\frac{d}{2}$ and $b<\frac{d}{2}$ are satisfied. If a=1, then $1+b<\frac{1}{2}(1+b+b^2E)$ is valid for $b\ge 2$. If a=-1, then $b<\frac{1}{2}(1-b+b^2E)$ is true with the exception E=1, b=2.

The proof is completed.

Lemma 9. $(\zeta \alpha, \alpha)$ is a NS if

- (1) D > 19 and d > 1;
- (2) D = 19 and $d \ge 6$;
- (3) D = 15 and $d \ge 7$;
- (4) D = 11 and $d \ge 8$;
- (5) D = 7 and $d \ge 12$;
- (6) D = 3 and $d \ge 56$.

Proof. If $(\zeta \alpha, \alpha)$ is not a NS, then there exists a periodic element $\pi = p + q\omega$ with $q \neq 0$. Then $|\pi|^2 = \left(p + \frac{q}{2}\right)^2 + \frac{q^2D}{4} \geq 4$. From (3.4) we have

$$\left(1 - \frac{1}{\sqrt{d}}\right)^2 \le \frac{9 + D}{16E} = \frac{E + 2}{4E},$$

whence

$$\sqrt{d} \le \frac{4E\left(1 + \sqrt{\frac{E+2}{4E}}\right)}{3E - 2} \quad (=: \lambda_E).$$

Since $d \geq E$, this cannot hold for $E \geq 6$: $\frac{\lambda_E}{\sqrt{E}} \leq \frac{\lambda_6}{\sqrt{6}} < 1$ for $E \geq 6$. This proves (1). Furthermore, $\lambda_5^2 = 5,995$; $\lambda_4^2 = 6,65$; $\lambda_3^2 = 7,957$; $\lambda_2^2 = 11,64$; $\lambda_1^2 = 55,35$ whence (2)-(6) follow.

A) Completing the proof. Case D=3

Lemma 10. Let D=3. If d>6, and $(\zeta\alpha, \alpha)$ has a nonzero periodic element π , then it is a unit, $\pi \in \{\pm 1, \pm \omega, \pm \overline{\omega}\}$.

Proof. If $|\pi|^2 \ge 2$, then from (3.4) $2 \le \frac{3}{4\left(1-\frac{1}{\sqrt{d}}\right)^2}$, which does not hold

for d > 6.

Lemma 11. Let D=3. Then $\{\pm 1, \pm \omega, \pm \overline{\omega}\} \subseteq \zeta \alpha$ for all α with $d \geq 7$.

Proof. Since $\overline{\omega} = 1 - \omega$, $-\overline{\omega} = -1 + \omega$, it is enough to prove that $(a+b)k+b\ell$, $-bk+a\ell \in \mathcal{L}$ for all the choices $(k,\ell) = (0,0)$, (1,0), (-1,0), (0,1), (0,-1), (1,-1), (-1,1). This is clear, if

(5.3)
$$m := \max(|a+b|, |a|, b) < \frac{d}{2}.$$

Let first m = |a + b|. Then a > 0 (a = 0 is excluded), (5.3) is equivalent to $a^2 + ab + b^2 - 2a - 2b > 0$, which is satisfied with the exception a = b = 1.

Let m = |a|. Then a < 0, -a > b. (5.3) is equivalent to $a^2 + ab + b^2 - 2|a| > 0$. If b = 1, then it fails only if a = -2. Let $b \ge 2$. Since

(5.4)
$$a^2 - |a|b - 2|a| + b^2 = a^2 - |a|(b+2) + b^2 > 0$$

holds for $b+2 \le |a|$, we have to consider only the cases a=-(b+1). Then (5.4) is equivalent to

$$|a|^2 - |a|(|a| + 1) + (|a| - 1)^2 = |a|^2 - 3a + 1 > 0$$

which holds for $a \le -3$, i.e. for all possible choices of a.

Finally we assume that m = b. We may assume that |a + b| < b, |a| < b. Then $1 \le -a \le b - 1$. (5.4) is equivalent to

$$0 < b^2 + a^2 + ab - 2b = a^2 + b^2 - (2 - a)b$$
.

If $2-a \le b$ then this is true. It remains the case 2-a=b+1, i.e. a=1-b. The equivalent condition is $0 < b^2 + (1-b)^2 - (b+1)b = b^2 - 3b + 1$. This holds for b > 3.

We proved (5.4) with the exceptions: $\alpha = -1 + 2\omega$ ($|\alpha|^2 = 4$); $\alpha = -2 + \omega$ ($|\alpha|^2 = 3$); $\alpha = 1 + \omega$ ($|\alpha - 1| = 1$!).

To finish the proof we shall prove

Lemma 12. Let $\mathcal{F} = \{0, 1, \omega\}$ and $\alpha = -1 + 2\omega$ or $\alpha = -2 + \omega$. Then (\mathcal{F}, α) is a NS.

Proof. Observe that $\beta \in \mathcal{F}$ implies $|\beta| \leq 1$. If $\pi \in \mathcal{F}$, then, by (1.3) $|\pi| \leq \frac{1}{\sqrt{3}-1} \approx 1,36$, whence it follows that $\pi = 0$ or π is a unit. $|\alpha| = \sqrt{3}$ holds in both cases.

Let $\alpha = -1 + 2\omega$. Then $-1 = \omega + \alpha(-1 + \omega)$, $-\omega = 1 + \alpha(-1 + \omega)$, $-1 + \omega = 1 + \alpha\omega$, $J(-1 + \omega) = \omega$, furthermore $1 - \omega = \omega + 1 \cdot \alpha$. This proves the first case.

Let $\alpha = -2 + \omega$. Then $-1 = \omega + \omega \alpha$, $-\omega = 1 + \omega \alpha$, whence $J^2(-1) = J^2(-\omega) = 0$. Furthermore $-1 + \omega = 1 + \alpha$, $1 - \omega = \omega + \alpha(\omega - 1)$, i.e. $J^2(-1 + \omega) = 0$, $J^3(1 - \omega) = 0$. The second case is proved.

The theorem is completely proved for D=3.

B) Completion of the proof. Case D=7

The critical values of $\alpha = a + b\omega$ are

$$(a,b)=(-1,1),\ (1,1),\ (-2,1),\ (2,1),\ (-3,1),\ (-1,2),\ (-2,2),\ (1,2),\ (-3,2).$$

 $(a,b)=(-1,1),\ (-2,2)$ are excluded by the condition $a+b\neq 0$. In the notation $d(a,b)=\left(a+\frac{b}{2}\right)^2+\frac{b^2\cdot 7}{4}$ we have

$$d(1,1) = d(-2,1) = 4$$
, $d(2,1) = d(-1,2) = 7$, $d(1,2) = d(-3,2) = 11$.

The integers in $Q(\sqrt{7}i)$ having norm 2 are $\{-1+\omega, \omega, 1-\omega, -\omega\}$. We show that all they belong to (α) if additionally $|\alpha|^2 > 4$ holds.

The inequalities $(a+b)k + 2b\ell$, $-bk + a\ell \in \mathcal{L}$ hold for all choices of $(k,\ell) = (-1,1)$, (1,-1), (0,1), (0,-1) and for all (a,b) = (2,1), (-1,2), (1,2), (-3,2). This can be checked immediately.

Furthermore, if there is a $\pi \in P$ with $|\pi|^2 > 2$, then $|\pi|^2 \ge 4$, and from (3.4) we obtain that $d \le 4$. Since $|a+b| < \frac{d}{2}$, $|b| < \frac{d}{2}$ hold for the listed cases if d > 7, therefore 1, $-1 \in \zeta \alpha$ as well.

Thus $(\zeta \alpha, \alpha)$ is a NS if $d \geq 6$.

The remaining cases are $\alpha = 1 + \omega$, $\alpha = -2 + \omega$.

Lemma 13. Let D = 7, $\mathcal{F}_1 = \{0, 1, -1, 1 - \omega\}$, $\mathcal{F}_2 = \{0, -1, 1, \omega\}$, $\alpha_1 = 1 + \omega$, $\alpha_2 = -2 + \omega$. Then $(\mathcal{F}_1, \alpha_1)$ and $(\mathcal{F}_2, \alpha_2)$ are NS.

Proof. In both cases $\max_{\beta \in \mathcal{F}_i} |\beta| = \sqrt{2}$, $|\alpha_i| = 2$. If π is periodic, then by (1.3) $|\pi| \leq \sqrt{2}$, consequently it is enough to prove that all integers with norm 2 have finite representations.

Let first $\alpha = \alpha_1 = 1 + \omega$. Then $\omega = (-1) + \alpha$, $-\omega = 1 + (-1)\alpha$, whence $J^2(\omega) = J^2(-\omega) = 0$. Furthermore $\omega - 1 = (1 - \omega) + \omega \alpha$ which gives $J^3(\omega - 1) = 0$. The assertion is true for $\alpha = \alpha_1$.

Let now $\alpha = \alpha_2 = -2 + \omega$. Since $-\omega = \omega + \alpha(\omega - 1)$, $\omega - 1 = -1 + \alpha$, $1 - \omega = 1 + (-1)\alpha$ we have $J^2(\omega - 1) = 0$, $J^2(1 - \omega) = 0$, $J^3(-\omega) = 0$. The proof is completed.

C) Completion of the proof for D = 11, 15, 19

1) In the case D=11 only the integers $\alpha=1+\omega$, $\alpha=-2+\omega$ are remained to consider.

Let $\alpha=1+\omega$. Then $\zeta\alpha=\{0,1,-1,-1+\omega,1-\omega\},\ d=|\alpha|^2=5$. Since $\max_{\beta\in\xi\alpha}|\beta|=\sqrt{3}$, for a periodic element π we have $|\pi|\leq\frac{\sqrt{3}}{\sqrt{5}-1}<\sqrt{3}$, whence $\pi\in\{0,1,-1\}\subset\zeta\alpha$. Thus $\pi=0$.

The case $-2 + \omega$ can be reduced to the case $1 + \omega$ as follows. Since for $\alpha = 1 + \omega$, d = 5 = odd, $\zeta \alpha = -\zeta \alpha$, therefore $(-\alpha, \zeta \alpha)$ is a NS as well, and by complex conjugation $(-\overline{\alpha}, \overline{\zeta}\alpha)$ is a NS. But $-\overline{\alpha} = -2 + \omega$, and we are ready.

2) Let D=15. We have to prove the theorem for $\alpha=1+\omega$, $\alpha=-2+\omega$.

Lemma 14. Let D=15, $\alpha_1 = 1 + \omega$, $\alpha_2 = -2 + \omega$, $\mathcal{F}_1 = \{0, 1, -1, 1 - -\omega, -1 + \omega, 2 - \omega\}$, $\mathcal{F}_2 = \{0, 1, -1, \omega, -\omega, 1 + \omega\}$. Then $(\alpha_i, \mathcal{F}_i)$ are NS's for i = 1, 2.

Proof. Let $\alpha = 1 + \omega$. Then $\max_{\beta \in \mathcal{F}_1} |\beta| = 4$, $|\alpha| = \sqrt{6}$. Thus $\pi \in P$ satisfies $|\pi| \le \frac{4}{\sqrt{6} - 1}$, whence $|\pi|^2 \le 7$ follows. All the integers with norm ≤ 7 are

$$\{2, -2, \omega, -\omega, 1+\omega, -1-\omega\} \cup \mathcal{F}_1.$$

All they have finite expansion in $(\mathcal{F}_1, \alpha_1)$. This is clear, since $1 + \omega = \alpha$, $-1 - \omega = -\alpha$, $\omega = -1 + \alpha$, $-\omega = 1 - \alpha$, $2 = 1 - \omega + 1 \cdot \alpha$, $-2 = (-1 + \omega) + (-1)\alpha$.

Let now $\alpha=-2+\omega$. The situation is very similar. We should prove that $\{2, -2, 1-\omega, \omega-1, -1-\omega\}$ have finite expansions in $(\mathcal{F}_2, \alpha_2)$. Since $2=\omega+(-1)\alpha, -2=-\omega+\alpha, -1+\omega=1+1\cdot\alpha, 1-\omega=(-1)+(-1)\alpha$, we are ready.

3) For D=19 the only remained case is $\alpha=-1+\omega$, but this is excluded by $a+b\neq 0$.

The theorem is completely proved.

References

- [1] Kátai I. and Kovács B., Canonical number systems in imaginary quadratic fields, Acta Math. Acad. Sci. Hung., 37 (1981), 159-164.
- [2] Steidl G., On symmetric representation of Gaussian integers, BIT, 29 (1989), 563-571.

I. Kátai

Department of Computer Algebra Eötvös Loránd University XI. Bogdánfy u. 10/b. H-1117 Budapest, Hungary