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1. Introduction

Let Q(i\/l_)) be an imaginary quadratic extension of @, I be the set of
integers in Q(ivD). Let @ € I, @ # 0, and o # unit. Let F = {fo =
=0, f1,...,fi-1}, t =| @ | be a complete residue system mod a.

Then, for each 8 € I there exists a unique a9 € F and a unique §; € I
such that

(11) ,3:: ao-i-aﬂl.

The function J : I — I is defined by J(B3) = B1. Observe that for K =l}1€3}-§| fl

we have

L1121
1.2 hl€ —++—
( ) | 1 I I l @ l
The inequality (1.2) implies that for every 3 € I the path, defined by iterating
J:
ﬂ) ﬂl = J(ﬂ)) ﬂz = J(ﬂl), ..
is eventually periodic.
Some S € I is said to be periodic (with respect to this expansion) if there
is some integer k > 0 for which g = J*(8) holds.
Let P be the set of periodic elements. The following assertions are obvious:
(1) 0 € P;
(2) (F,a) is a number-system (N S) if and only if P is singleton, P = {0};
(3) If I € P, then

. K
. < —
(1.3) 'H'-|a|—1’
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(4) f I € P, then J(II) € P. Let G(P) be the directed graph defined by
I — J(II) for every Il € P. Then G(P) is a disjoint union of circles;

(5) f a—1 is a unit in I, then no NS with base a exists, since for an
arbitrary choice of F the elements z; = (1 — a)f, f € F are periodic with
period 1.

To prove (1.3), assume that I € P;, and I = II; — II; — ... — IIx(= ).
Assume that max 1| I, |=| Oo |. Apply (1.2) with 8 = z_;, B = .
v=0,....k—

(1.3) it follows immediately.

In our paper [1] written jointly with B. Kovacs we determined all possible
bases for which (F*,a), F* ={0,1,...,|a|? -1} isa NS.

The problem to determine all the possible coefficient systems F for which
(F,A) is a NS, seems to be very hard. In the other hand, if F is given, to
decide whether (F,a) is a NS or not, due to (1.3) is a simple task.

G. Steidl [2] proved that in the ring Z[i] of the Gaussian integers for every
| @ |> 1 except @ =2, 1 +14, 1—i always exists a suitable coefficient set {,
by which ({4, @) is a NS. She effectively constructed {,. We shall extend her
result to arbitrary imaginary quadratic fields.

2. Construction of the coefficient system

Lemma 1. Let e,b,c,a € Z be arbitrary integers, d = ae — bc, S be the
matriz
e b
§= [—c a ] ’

Assume that d # 0. Then there ezists a unique set F = {L/ v =0,1,...,
| d| =1} of integer vectorials in Z3, such that

v ._
[s” ] - Sfl
satisfies the following conditions:

ld] 141].
(I)rl') s.,G( 2:2 ’

(2) r, =r, (mod d), s, =s, (modd) cannot hold simultaneously forv # p.

Proof. This assertion is well known in number theory.
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Remarks.
(1) If d is odd, then F = —F.
(2) If b= c =0, then F is of simple shape. Let k, resp. [ run over the integers
ld] ld] 14l
2 2 2

is the collection of all possible vectorials [ I] .

satisfying — <ek<— <al < 'gl respectively. Then F

(3) If e = a =0, then F is of similar shape.

If D+ 1% 0 (mod 4), then {1,iv/D}, while for D # -1 (mod 4) {1,w} is an
integral basis in I, where

_1+#/D
= —
et 1+D
E= —
Let D # —1 (mod 4), a = a+ibv/D, d:= a@ = a? + b2D. We define
Im &
Ca := {€ = k+ilv/D} to be those integers for which r = Re e and s = n\x/ge
satisfy the conditions: r,s € (—g, g] Explicitly
r = ak + blD,
s = —bk +al.

From Lemma 1 we have that {, is a complete residue system mod d.
Since @e = r + isv/D,

2
dlel=r+sD< T(1+D),

whence
Vi
e |< —\/l + D.
Consequently for II € P we obtain that
v1+D

(2.1) IHI_21_1/J-
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2 2
Let D = —1(mod 4), a =a+bw, d = aa = (a+g) +sz. We define

(o = {€ = k+lw} as the integers for which ae = (a+b)k +b |E + (al — bk)w =

= r + sw satisfies the conditions r,s € (—g, -g] .

Since

r+sw= (r+§) +i§\/5,

we obtain that
2

’ 2 2 2
2 5\2 s 3 d d
+ =(r+=2) +=D<(3d) +=D=— D
|+ sw | (r 2) 4D <4d) 16D 16(9+ ),

consequently | e |< @\/9 + D, whence by (1.3) we get that

Vo¥D
41~ )

(2.2) 1T <

3. Formulation of the theorem and simple cases

Theorem. Let a be an arbitrary integer in an imaginary quadratic
eztension field Q(iv/D), such that | « |> 1 and | 1 — o |# 1 holds. Then
(F,a) is a NS with a suitable coefficient set F.

Lemma 2. Ifa € Z, a # -2,-1,0,1, then ((s,) is a NS for every
extension field Q(i\/ D).

Proof. fa € Z,thena=a+0-ivVDora=a+0-w, d=a% (.=
= {[l;]} for which I, k € (—IL2| , l—g——l] Clearly we can expand each
v,u € Z in a NS with base a and coefficient system {v € (-— I 5 l , l%‘-] }

Q

Ifu=3% kia®, v=) lLa', then

B=u+ivvD=Y (k +Di)a,
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B=utw = Z(k, + liw)a’

are the corresponding expansions of the integers 8 in I.

Lemma 3. Ifa = ibV/D or a = bw, then (Cay@) is a NS, except the cases
b==1 for D=1 and 3.

Proof. We can argue similarly as in the proof of Lemma 2. In the
exceptional cases | a |?=1 (o = {0}.
Lemma 4. LetlI € P, # 0, I = p+igV/D or Il = p+ qw, according

to whether D+1# 0 (mod 4) or D+1 =0 (mod 4), wherep,q€ Z. Ifq#0,
then

1\? D+1
(31) (1—73) S—45-— for D+1¢0(mod4),
and

1\? _1D+9
. -] <2=Z=2 = .
(3.2) (1 \/3) <iD71 for D+1=0 (mod 4)

Proof. From (2.1), (2.2) we have

D+1

(33) PP +¢’D< -y (=: Rp,a)
q\2 g2 9+ D .
(3.4) (p + 5) + Z D < m—); (—. SD,d)

whence (3.1), (3.2) immediately follow.
Lemma 5. All the rational integers e = k + 0ivD satisfying

d 11
k <—min<-——, —)
[El<gmin\Tay 5]

belong to (o if D+ 1% 0 (mod 4). All the rational integers e = k+0-w of the

interval P )
. 1
< - —_—
'”-2mm(m+br|b0

belong to (o if D+ 1 =0 (mod 4).
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Consequently if p € P, then

(3.5) £__ 1 <R
’ 4 max {aZ,b2} = D4
for D+ 1# 0 (mod 4), and
2
(3.6) 4 . <Spad

"4 max {(a + b)%, 5%}

for D+1=0 (mod 4).

Proof. The assertions are obvious consequences of the definition of (,.
4. Proof of the theorem for D + 1 # 0(mod 4)

We assume that D > 2. The case D = 1 is completely solved in [2].

Assume first that there is a real 0 # II € P for some a = a + ibv/D. If
1<|a|<|b]|, then from (3.5),

VA(/d-1) < JTTD = [LHDR0 (A2 DI 4

_d v 4 d
“2al " 2]a]|~2[a| T 2[a|D

1< Lo 1
~Vd 2la| 2|a|D
If D = 2, then from (3.5), and from 3b> < 1,5d we deduce that

, which cannot occur if D # 2.

2
d? (l - \/la) < 1,5d, whence d < 4 follows. Since d = 4 implies that either

b =0 or a =0, and these cases were treated in Lemmas 2 and 3, we can
consider only the case d = 3, |a| = |b] = 1. We shall treat these cases later.

If |a|>|b], then from (3.5),

b% 4+ b2D
—

Vd(vVd=1) < /(1 + D)a? = :

la|?<
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R ST I L
ot =gt
whence
(4.1) (2]b]-1)d—2|b|Vd—|b|*<0.

This inequality cannot be true for d > XZ, where

b
Xy = 2|'b|' (1+v/218)).

Since z; = 1+/2, (4.1) could be held only for | a |=| b|=1,d =2.For | b |> 2
we have d > b%(1 + D) > 3b2, and

WS b2(1+/2]5])? b2
I R I

thus (4.1) cannot be true.

We proved the following

Lemma 6. Leta = a+ibV/D, | a |>1, D >2 D+1 %
20 (mod4), a#0, b#0. Then P does not contain real Il # 0 except
perhaps the cases D=2, |al|=|b|=1.

Furthermore, computing Rs ¢ and Rz 7 we obtain that (3.1) is not satisfied
fd>D+1and D>5and for D=2,ifd > 7.

To finish the proof we have to consider only the cases | a |=| b |= 1;
|a|=2,|b=|1, D=2 Ifdisodd, then (o = —(a, furthermore {(_o = (a,
(s = 3o, thus it is enough to consider one of a,@, —a, —a in these cases.

Let a = 1+ iv/2. Then ¢, = {—1,0,1}. Observing that Rz 3 < 4, we get
that for Il = p+iqv/2 we have p?+2¢% < 3. Thus | p|< 1,| ¢ |< 1. ¢ = 0 cannot
occur since then I = p € (4, and J(Ca) — 0. Thus I € {%iv/2, +1 % iv/2}.
But J%(a) = J(1) = 0, J%*(—a) = J(~1) = 0, furthermore iv/2 = —1+
+la, —iv2=1+(-1)a, a=-1-i/2a, —a=1+iv2e, and so all
the candidates for P have finite expansions.

Let a = 1+ 2iv/2. Then d = 6,

¢a ={0,1,-1,i¥D, -1 +iVD, 1-iVD}

and Ry ¢ < 3, whence p? < 3, ¢ = 0 should follow, thus T = p € {-1,0,1,} C
C Ca, so thisis a NS as well.
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5. Proof of the theorem for D + 1 =0 (mod 4)

In the whole section we shall assume that for « = a + bw the conditions
b>1,a#0,a+b# 0hold. If (F, a)is a NS, then (F, @) is a NS as
well. Since @ = (a + b) — bw, and in Lemmas 2, 3 the cases a = 0; b = 0,
consequently a + b = 0 were treated it is enough to prove the theorem under
the above conditions.

For short let £ be the set

d d
-
(-3 3]

Assume that d > 1.

5\* D 2p
(a+§) 4 =a +ab+b

Lemma 7. Every rational integer k, |k| < — belongs to (a.

Proof. We should prove that k(a + b) € E, —bk € L holds for all k,
|k| < l%l. If |a+ b > b, then (a + b)a > 0, consequently

ab+ —
a++4

la+blla] _a(a+d) 1 2D
2 7 <23 <

Ay

If |a+ b| < b, then a < 0 and

|a|b 1 2
2 <2 2{a +ab+b°E}

is equivalent to |a|b < 1(a? + b?E), which clearly holds, since E > 1, a # —b.

Lemma 8. Ezcluding the integers a = —1+ 2w, 14w in the case D = 3,
and a = 14+ w for D =7, for the others the ezpansion ((a, a) either has a
nonreal periodic element, or it is ¢ NS.

Proof. Assume in contrary that P C Z and there is a nonzero p € P.

Let first 5 = 1. If p; = J(p), then there is an e € {a such that p = e + dp,
consequently pa = ea + ap;, ead = r+ sw, r,s € L. Thus (a + 1)p = r + dpy,
(a + 1)p la+1| 1| 1

—p = s, whence p; ; Hence |p1| < 3 5 Since p; ¢ Ca,
from Lemma 7 we obtain that

al+1 a+1|+1
(5.1) ol 1y < Lot 1l
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(5.1) fails for a < 0. Let @ > 0. Then |p1| = atl or 042-2 according to
the parity of a. So we have that |p| = a+l or a+2 for every p € P\ {0}

Then either J(p) = p or J(p) = —p, J?(p) = p. In the first case —r =
= (@~ (a+ D)pi = (2 + E~ )py, thus 5 > (a” + B
hold with the exceptions £ =1 and 2,a = 1.

This cannot

In the second case (J(p) = —p)) we conclude that d > |d+ (a + 1)||p1|
which is impossible for p; # 0.

Let b > 2. If py = J(p), then (a + b)p = r + dp;, —bp = s hold with some

r,s € L. Thus p; = r+e_ 2p, whence
d d
la| lalls| |al
(5.2) ol <1+ Spl =14 0 <14 0L
Since |p1| > la |2 , and |2“b|+l< ]a|2+l ifb> 2 orif b=2, and |a| > 2, we

should consider the cases b = 2, |a| = 1, 2. If |a| = 2, then |py| > 2, and (5.2)
cannot hold. If |a| = 1, then from (5.2) P C {0,1,—1}. We shall prove finally-

that 1,—1 € Ca. This holdsif |a + §| < g and b < g are satisfied. If a = 1, then

1+b< %(1+b+b2E) is valid for b > 2. If a = —1, then b < %(l—b+b2E)
is true with the exception £ =1, b= 2.
The proof is completed.

Lemma 9. ((a, a) is a NS if
(1) D>19 andd > 1;
(2) D=19 and d > 6;
(3) D=15andd2>17;
(4) D=11andd2>8;
(5) D=Tandd > 12;
(6) D=3 and d > 56.

Proof. If ((a, a) is not a NS, then there exists a periodic element 7 =

q\?, ¢*D
= p+ qw with ¢ # 0. Then |7|?> = (p-l— 5) + e > 4. From (3.4) we have

2
e == ==
(1 ﬁ) ="16E ~ 4E '
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’E+2
4F (1+ F)

3E -2

whence

\/L-]S (:: /\E)

Since d > E, this cannot hold for E > 6: < lfor E > 6. This proves
\/_ \/'

(1). Furthermore, A2 = 5,995; A2 = 6,65; A2 = 7,957; A2 = 11,64; A? =
55,35 whence (2)-(6) follow.

A) Completing the proof. Case D=3

Lemma 10. Let D = 3. Ifd > 6, and ((a, o) has a nonzero periodic
element m, then it is a unit, 7 € {£1, tw, +w}.

Proof. I |r|? > 2, then from (3.4) 2 < ————3—5, which does not hold

4(1- =
for d > 6.
Lemma 11. Let D = 3. Then {£1, tw, 3w} C {a for all a withd > 7.

Proof. Since w = 1 —w, —w = —1 + w, it is enough to prove that (a+
+b)k+bL, —bk+af € L for all the choices (k, £) = (0,0), (1,0), (-1,0), (0, 1),
(0,-1), (1,-1), (-1,1). This is clear, if

(5.3) m := max(|a + b, |a|, b) < g

Let first m = |a + b|. Then a > 0 (a = 0 is excluded), (5.3) is equivalent to
a? + ab + b2 — 2a — 2b > 0, which is satisfied with the exception a = b= 1.

Let m = |a|. Then a < 0, —a > b. (5.3) is equivalent to a®>+ab+b?—2|a| >
> 0. If b = 1, then it fails only if a = —2. Let b > 2. Since

(5.4) a’ - |alb—2|a|+ b =a®—|a|(b+2)+ b2 >0

holds for b + 2 < |a], we have to consider only the cases a = —(b + 1). Then
(5.4) is equivalent to

la|* — lal(la] + 1) + (la] = 1)* = |a|* -~ 3a +1 > 0,

which holds for a < —3, i.e. for all possible choices of a.
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Finally we assume that m = b. We may assume that |a + b| < b, |a]| < b.
Then 1 < —a < b— 1. (5.4) is equivalent to

0<b>+a’+ab—2b=a®+b%—-(2-a)

If 2 — a < b then this is true. It remains the case 2—a=b0+1,1e. a=1-0.
The equivalent condition is 0 < b2 + (1 — b)2 — (b + 1)b = b2 — 3b+ 1. This
holds for b > 3.

We proved (5.4) with the exceptions: a = -1+ 2w (Ja|?> = 4); a =
==-24w (le)?!=3)a=14w (Ja-1/=1!).

To finish the proof we shall prove

Lemma 12. Let F = {0, 1, w} and a = -1+ 2w ora = -2+ w. Then
(F, a) is a NS.

Proof. Observe that 8 € F implies |8] < 1. If » € F, then, by (1.3)
In| <

n ~ 1,36, whence it follows that # = 0 or 7 is a unit. |a| = V3

holds in both cases.

Let « = =1+ 2w. Then -1 = w+ a(-14w), ~w = 1 + a(-1+w),
-14w=1+4oaw, J(-1 +w) = w, furthermore 1 —w =w + 1 - a. This proves
the first case.

Let « = =2+ w. Then -1 = w + wa, —w = 1 + wa, whence J%(-1) =
= J?(—w) = 0. Furthermore —1+w =14a,1-w = w+ a(w - 1), ie.
J? (=14 w) =0, J3(1 —w) = 0. The second case is proved.

The theorem is completely proved for D = 3.

B) Completion of the proof. Case D=7

The critical values of o = a + bw are

(a,b) = (_1! 1): (1: 1)) (""2v 1)’ (2) 1)’ (_3’ l)’ (_1’2)v ("2»2)v (1’2)x ("3:2)'
(a,0) = (-1,1), (—2,2) are excluded by the condition a+b # 0. In the notation

2 2
d(a,b) = (a+%) +b47 we have

d(1,1) = d(=2,1) = 4, d(2,1)=d(-1,2)=17, d(1,2)=d(-3,2)=11.
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The integers in Q(+/7i) having norm 2 are {-1+w, w, 1-w, -w}. We
show that all they belong to (o if additionally |a|? > 4 holds.

The inequalities (a + b)k + 2b¢, —bk + af € L hold for all choices of (k, £) =
(-1,1), (1,-1), (0,1), (0,-1) and for all (a, b) = (2,1), (-1,2), (1,2), (-3,2).
This can be checked immediately.

Furthermore, if there is a 7 € P with |7|? > 2, then |7|? > 4, and from

(3.4) we obtain that d < 4. Since |a + b| < g, [b] < g hold for the listed cases
if d > 7, therefore 1, —1 € (a as well.
Thus ((a, a)isa NSifd > 6.

The remaining cases are a = 1 +w, a = -2 4+ w.

Lemma 13. Let D = 7, F; = {0,1,-1,1 - w}, F, = {0,-1,1,w},
a; = 14w, ag = -2+w. Then (Fy, a;) and (F3, a3) are NS.

Proof. In both cases %:arx 18] = V2, |ai| = 2. If 7 is periodic, then by

(1.3) |7| € V2, consequently it is enough to prove that all integers with norm
2 have finite representations.

Let first « = o) = 1+ w. Thenw = (-1) + @, —w = 1+ (—1)a, whence
J*(w) = J¥(-w) = 0. Furthermore w—1 = (1—w)+wa which gives J3(w—1) =
= 0. The assertion is true for a = a;.

Let now a = a3 = -2+ w. Since ~w =w+a(w-1),w-1=-1+a,
l1—w =1+ (=1)a we have J2(w —1) =0, J}(1 —w) =0, J3(~w) = 0. The
proof is completed.

C) Completion of the proof for D = 11, 15, 19

1) In the case D = 11 only the integers & = 14w, @ = —2+w are remained
to consider. '

Let @ = 1+ w. Then (a = {0,1,-1,-14w,1 —w}, d = |a|?> = 5. Since
max |B| = /3, for a periodic element 7 we have |7| < V3 < V/3, whence

pe€a Vh-1

7 €{0,1,-1} C {a. Thus 7 = 0.

The case —2 + w can be reduced to the case 1+ w as follows. Since for
a=1+4+w,d=>5=o0dd, {a = —(a, therefore (—a, (a) is a NS as well, and by
complex conjugation (—@, {a) is a NS. But ~a = —2 + w, and we are ready.
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2) Let D = 15. We have to prove the theorem fora = 1+ w, a = -2 +w.

Lemma 14. Let D=15, oy = 14w, a3 = -2+ w, F; = {0,1,-1,1-
—w,-14w,2-w}, F2={0,1,-1,w,—w,1 +w}. Then (a;,F;) are NS's for
i=1, 2.

Proof. Let a = 1+ w. Then max |8] = 4, |a] = V6. Thus 7 € P satisfies
1

4
|r| < F, whence |7|?> < 7 follows. All the integers with norm < 7 are

{2, -2, v, ~w, 14w, -1 -wW}UF;.

All they have finite expansion in (F;, ;). This is clear, since 1 + w = a,
-l-w=-aq,w=-1l4a,~w=1-a,2=1-w+l-a, -2 = (-14w)+(-1)a.

Let now a = —2 4+ w. The situation is very similar. We should prove
that {2, —2, 1 —w, w—1, —1 — w} have finite expansions in (F2, a3). Since
2=w+(-Da, -2=-w+a,-14w=141-a,1-w=(-1)+ (-1, we
are ready.

3) For D = 19 the only remained case is a = —1 + w, but this is excluded
by a+b#0.
The theorem is completely proved.
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