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THE HAUSDORFF-DIMENSION
OF THE BOUNDARY OF A UNIT-INTERVAL
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Abstract. This paper presents a new method how to calculate the
Hausdorff-dimension of the boundary of the unit-interval of a number-
system. We show that the nonempty overlaps from a well defined set of
feasible translations of the unit-interval with the unit-interval are graph-
self-similar.

1. Introduction

Fix a complex number 6 (the base) with an absolute value greater than
one and a finite set D of complex numbers that contains zero. The elements of
D are called ”digits”. The set

-1
H:{ Y dib':die D, ieN}
is called the unit-interval of the pair (6; D) and

M .
W = {Zd"bi :diED,iE{O,...,M},MGNo}

=0
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is called the set of whole numbers. They are not integers in general, even they
are not closed for the addition.

Several questions arise: Does the equation W + H = C holds? Is it true
that A((H +11)N(H + v2)) = 0 for all v, # y2 € W, where ) is the Lebesgue-
measure?

The aim of this paper is to develop a method to calculate the Hausdorff-
dimension of 0H.

In some cases it is not of interest to look at the translates of H by whole
numbers, but by elements of a countable ring A that contains W. To guarantee
that the method works, we suppose that the triple (8, D, A) defines a just-
touching-covering, i.e.

U H+~y=C,
€A

MH+1)N(H+2X2)) =0 (m #72,% €4A)

holds. The method introduced, is used to examine the sets B(y) :=y+HNH.
The connection between these sets and the boundary of H is given by the
following

Lemma 1. Let (8, D, A) be a just-touching-covering. It follows
z€H& e HNH+y fora y€ A\{0}.

Proof. The proof is shown only for ” <= ”: Let z € HN H + v and
suppose that z is not a boundary point of H. Then there exists an ¢ > 0
with B¢(z) C H. Using the self-similarity of H with respect to the iterated
function-system f4(z) := (2 +d)/0, d € D, i.e.

H= fa(H),

deD

we can deduce that
z€H+y. = 3j1:z2€ fa;,, (H)+y. = 3j2:z € faj, 0 fa;,(H)+7. = ... etc.

By using induction we can find therefore a sequence ji, ..., j; such that
z € fa4; o...0 fa; (H)+v =: G and diam (G) < €. It follows that G C
C B¢(z), and because of A\(H) > 0 (A is countable), we obtain A(G) > 0. But
HNH+ v D G implies A(H N H + ) > 0 which is a contradiction to the
Jjust-touching-covering property.

The Lemma shows that the union of all B(7y), v # 0 equals to the boundary
of H, if a just-touching-covering is given.
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We can prove more than the stated result above: If there is an inner point
in H then the set of inner points of H is dense in H. Heuristically spoken: One
inner point is distributed through the set H by the iterated functionsystem.

2. The graph G(S5)

In [5] and [6] it is suggested to use the graph G(S). Let S be the set of those
v € A for which B(¥) is nonempty. One can easily prove that B(¥) is nonempty,

iff v has an expansion of the form v = Z 6ip', 6 € B, where p := 1/6 and

1=

B:= D - D. 1t follows that S C H — H and therefore | v |< 2 max| z|=U
for all ¥ € S. The graph G(S) is constructed by the following a.lgonthm

The graph G(S)

(1) For all y € A, 6 € B calculate ys := v8 — §. If | 45 |< U, then direct
an edge with the name 6 from v to ;5.

(2) Delete v if no edge leaves ¥ and all edges that end in 4. Continue this
process until no appropiate 4 remains.

Observe that 0 is a node of the graph G(S) (0 € D). In most cases it is assumed
that (8, D) satisfies the following properties: (1) @ is an algebraic integer with
an absolute value greater than 1, (2) D is a complete residue-system mod 8,
and (3) all conjugates of § have an absolute value greater than 1. We will say,
that (%) is satisfied, iff we want to assume that the properties (1)-(3) hold.

In the case that (%) is satisfied only the graph G(S*) is of interest. G(S*)
is constructed the same way as the graph G(S), one only writes ¥ € A \ {0}
instead of ¥ € A and 0 <| 5 |< U instead of | y5 |[< U in the algorithm. Then
0 is no node of the graph G(S*).
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3. Graph-Self-Similarity

For E C C the s-dimensional outer Hausdorff-measure (s € [0,00]) is
defined by

(e}
8 P 8 — 3 |8
H*(E) := lim H}(E) := lim (mf; | Ui | ) ,
where the infimum is over all countable é-coverings {U;} of E. It can be proved
that there exists an so € [0, 00] with the property

H*(E) =00 if s < so,

H(E) =0 if s> so.

so is called the Hausdorfl-dimension of E.

We will use the concept of grahp-self-similarity which has been introduced
by Mauldin and Williams [7] and [1].

Let a finite directed multigraph (V, E,4,t) and a real-valued function r
defined on FE be given. Here V denotes the set of nodes and E the set of edges.
The function i gives the initial node of an edge and the function t gives the
terminal node of an edge. We will assume that for all v € V there is an e € E
with i(e) = v. We call the graph together with the function r a Mauldin-
Williams-graph. For all e € E let a similarity f. : C — C be given. A list of
nonempty compact sets K,, v € V is called an invariant list for the iterative
functionsystem f.,e € E, iff

(ﬁ) K, = U fu(Kv)-

veV,e€E,,

In this case the sets K,,v € V are called graph-self-similar. It can be proved
that the invariant list is uniquely determined, if r(e) < 1 for all e € E. In this
paper we always assume that r(e) < 1 for alle € E. Forallt > 0,u,v € V
define Ay, (t) := Y. r(e)' and the matrix A(t) by A(t)[u;v] := Ay (t). The
e€E.,

spectral radius of A(t) takes the value 1 for a uniquely determined value of
to = t. This to is called the graph-dimension of the Mauldin-Williams-graph
(V,E,it,r).

If the graph is strictly connected, then the system

(++) = Y e uev

vEV,s€E,,
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has a solution with ¢, > 0 for all v, iff s = t.

The graph-dimension can be used to calculate an upper bound of the
Hausdorff-dimension of the sets of the invariant list. The graph-dimension
equals the Hausdorff-dimension, if the so called open-set-condition is satisfied
(see [1]).

We shall use two main results connecting the Hausdorff-dimension with
graph-dimension:

Theorem 1. Let the graph (V, E,i,t) be a strictly connected Mauldin-
Williams-graph and let r(e) < 1 for all e € E. The graph-dimension is an
upper bound of the Hausdorff-dimension of K,. If the open-set-condition is
satisfied, then the Hausdorff-dimension of K, equals to the graph-dimension.

Observe that all K,, v € V have the same Hausdorff-dimension, if the
graph is strictly connected (use the equation (f)). What happens if the graph
is not strictly connected? To clarify this case we need some preliminary
explanations. Two strictly connected components Wy, W, of V are called
comparable if there exists a path from W; to W3 or a path from W, to W;.
Let SC(V) be the set of all strictly connected components of V. The equation

s = max sw holds, where s is the graph-dimension of V and sw is the
WeSC(V)

graph-dimension of W € SC(V'). Let

K = UK.,.

veV

We can now state the following

Theorem 2. If the elements of M := {W € SC(V) : sw = s} are
incomparable, then
dimg(K) < s.

If in addition the open-set-condition is satisfied, then equality holds in the
formular above.

The proofs of the stated results may be found in [1], [3], [7].

4. The graph V(S)

Let the graph G(S) be given. Let m(8) count the number possibilities to
write § in the form § = d — d'. If the graph G(S) contains an edge from A; to
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Aj with the name §, then direct m(é) edges from A; to A; in the graph V(S)
and define m(6) mappings on B(A;) by

z+d*
0 b

fae 12—

where d* runs through all possible elements of D such that d* — 6 € D.

Proposition. A; - A, d* — 6 € D implies fs(B(4;)) C B(A;).

Observe that for all nodes v of the graph there is an edge starting in v.
The main point made is that the sets B(A;) are the invariant list of the iterated
functionsystem f,.

Proposition.

B(4;) = U fe(B(45)).

A;€S5,e€EEL a;

00 ) 0 )
Proof. If z € B(A;), then z can be written as z = Z dip' = Ai + 2 d;p

Thus A; = E(d —di)p'. Let Aj := 0A; — (d; — df) Z diy1p' — diy,p' and

§:=dy—dj. We conclude that the graph V(S) conta.ms an edge from A; to A;

with the name 6 and that f;, (z) = z, where z = E diy1p' = Aj + E di ,p' €
=1 i=1

E.B(Aj)

If there is an edge with initial nodes 4 # 0 ending in 0, then it is possible
to find a smaller copy of H in B(y). If a just-touching-covering is assumed to
be satisfied, this is impossible, because the boundary must be a zero-set and
H must have a Lebesgue-measure > 0.

As mentioned in Section 2, if (*) (Section 2) is satisfied, then we use the
graph G(S*). From the graph G(S*) the grahp V(S*) is constructed in the
same fashion as V(S) from G(S).

5. Examples
Example 1. To illustrate the above described method, let § = 2+:, D =

= {0,1,-1,—¢,¢}. It is known that W = Z[i]. The graphs G(S) resp. V(S)
are shown below. (m(1 + i) = m(-1—1) = m(1 — ) = m(-1+1) = 2). The
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nodes W := {—1, —, 1,4} define a strictly connected component of V(S) with
the ay, = 1,3652...

To calculate the graph-dimension we use the system of equations (**):
T, = 2\z, + Az,

I9 == 2\z9 + Az3

T3 = 2Az3 + Az4

T4 =2 24+ A1,
With back-substitution this yields

(1-2MN)z, = Az2

(1 - 2/\)31’2 = /\321.

If we take zo = 1, then
(1 -2))* =24

A = 1/3 solves this equation, and we obtain ax = s = 1.3652---. The other
components of V(S*) have only one point, and therefore their graph-dimension
is zero. The maximum is ag = 1.3652 - - -.

But is this value equal to the Hausdorff-dimension of K? Yes, but it would
need some more steps to prove this (see for example [5]). The problem would
be solved, if the open-set-condition had been satisfied, but the author was not
able to prove or disprove this.
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We remark that the graph and the system of equations have symmetry-
properties which always arise, if the assumption () is satisfied: If the graph
G(S) contains an edge from ¥ to g with the name 6, then there is an edge from
—v to —p with the —é.

Example 2. The following picture shows the graph-self-similarity of the
twin-dragon
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6. Multiple overlappings

Up to now we have investigated the sets H N H + 4. Now we will look at
sets of the form

HNH+7NH+ 7.
The analogue to the set S in this context is defined by

T :={(71,72) : % € A, B(m1) N B(72) # 0}.

Let (y1,72) € T. It follows that there is a z € H with

=) diff =+ ) dipt =1+ ) dip
From this the following expansions result
7= (di — di)p,

y2 =Y (di —d})p,

l.e. 71,72 have expansions in D — D with the same first element. This property
characterizes completely the element of T: let v;,v2 have such expansions.

Then . .

v+ Y dipt =Y dip,

v2+ Y dipf =) dip'.
We conclude that z := Y d;p* € B(1) N B(y2). To summarize:

Bn)NB(12) #0 & 11 =Y (di—d)d, 72=) (di—d;)p"
Let (y},73) € T have expansions as in the equivalence above. Then it holds
that
7 =m0 = (dy —d) = ) (dig1 — iy,

‘722 =730 — (di - dl) = E(diﬂ - d:+1)Pi'

Thus (v7,7) € T-

Clearly for all (y1,72) € T we have | v |< U, ie. || (1,72) [lo< U.
Therefore it is obvious how to define the graph V(T):
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The graph V(T)

(1) For all (11,72) € A? with || (71,72) |lo< U and for all pairs of the
form (d — d',d — d") calculate (y1,72)0 — (d = d’, d—d’). If || (71,72)8— (d -
d',d—d") ||o< U, then direct an edge from (71, 72) to (71,72)0— (d—d’,d—d")
with name (d,d’,d").

(2) Delete (y1,72) if no edge leaves (y1,72) and all edges that end in
(71,72). Continue this process until no appropiate (71, v2) remains.

Then next proposition states that the sets B(v1)N B(72) are graph-self-similar.

Proposition. (1) Suppose (v} ., 73) @D (7v3,72). 1t follows
fa(B(7}) N B(73)) C B(1) N B(73)-

(2) It holds that

B(11) N B(72) = U fa(B(1}) N B(13)).

d,d4/,d")
(m .'7:)( - (773)

The diagonal elements (y,7) € S? are elements of the graph G(S) and the
same is true for the elements of the form (0, ...) and (..., 0), but these elements
do not define real multiple overlappings. To resolve this, assume that (*) is
satisfied. Then we can conclude that: (1) If an edge starts from a node not
on the diagonal then the terminal node is not on the diagonal; (2) If an edge
starts at (...,0) it also ends in (...,0) and the same is true for (0,...). If we
put this together, it is clear how the graph V(T™) is defined.

To calculate the graph V(T) it is possible to use the graph G(S):

(d,d',d") d-d' d-d"
Mn) = HAen = A A= 4

Example. The twin-dragon T* = {(1 +1,1),(1 + i,%),(-1,7),(-1,-1-
—i),(—1,-1—1),(1,—%)}. The graph V(T*) is
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The graph-dimension is 0 for both components.
7. Radixrepresentation in R"

Let M be an n x n matrix of integer entries such that M has n distinct
eigenvalues the module of which is larger than 1. Let further D be a finite
subset of R". The sets

H= {iM“d.-:d.-eD},

i=1

=0

W={§:M‘di:d;€D},

are a generalization of the sets H and W of the preceding sections. It is not
surprising that the methods useful there can also be applied here. Define S to
be the set S:={y € W: HNH + v # 0}. We have

B(y)#£0&v= i M~i(d; — d).

i=1
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In an obvious way the graphs G(S) and V(S) can be defined. Again we have

that
Bay= |J  f(B4)).

A;ES,€EEL, 4;

This means that the overlaps are graph-self-similar.
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