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Abstract. The problem of learning some kind of probabilistic Boolean
concepts, which are an extension of the Boolean concept used by Valiant, is
analyzed. An algorithm based on the maximum likelihood principle is given
for learning these concepts from neutral examples by means of multinomial and
Poissonian schemes. Asymptotic results, based on the delta method, allow the
characterization of classes of learnable and non-learnable concepts. Finally, two
illustrative examples of application are given.

1. Introduction

The problem of learning Boolean concepts has been investigated by many
authors as Angluin (1978, 1986), Dietterich and (1983), (1984), and (1988), etc.
They use a deterministic view of concepts which is useful when no uncertainty
associated with them exists. However, there are many practical problems, as
medical diagnosis for example, in which a different view of concepts is required.

In this paper we analyze the problem of learning concepts from a probabilistic
point of view and show its practical interest by means of very simple practical
examples.

2. Probabilistic view of learning

In the theory of learning (deterministic) Boolean concepts Valiant [3], Pitt
and Valiant [2], we assume that each object in our world is represented by some
assignment of the feature variables {z;} to either 0 or 1.

Thus, each object is simply a vector € Q = {0, 1}*. A concept C is a subset of
the 2 possible vectors. But in many practical problems there is an inherent uncer-
tainty: the observation of the feature variables does not fully determine whether
the object belongs to the concept or not. Let us suppose that it is because of the
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existence of another set of unobservable feature variables {Y;}, i = 1,2,...,k. So,
each object is represented by the concatenated vector (;, ?) € {0, 1}*** but only
X is observable, and the full description of a concept is given by D* C {0, 1}'+*.

Following Valiant’s approach, we assume that examples are generated by a
fixed, but unknown probability distribution 7(Z, y) on {0, 1}***. The marginal

distribution of X€ {0, 1}* is denoted by m(z) = ¥ 7(Z, y), and the

ve{o, 1}*
conditional probability that the object belongs to the concept after observing z is
p(z) = X3 rept T V)
m(7) ’

In the following we shall assume that the set §2 is partitioned in three sets

Qo ={z € Q/p(z) =0 or p(z) =1},
Q) ={z€eN/0< p(z) <1},
Q2 = {z € 2/p(z) known}.

Note that the deterministic concepts correspond to the special case where
Ql = Q
Now we can state that the only goal of learning a probabilistic concept can be

the estimation somehow of the distribution p(z). Thus, we assume that m is only
a parameter of the observation process during the learning and after it as well.

The formal description of the learning process is the following: Let P be the
probabilistic concept to be learnt. P is given by one function {p(;), zeQ =

= {0, 1}‘}, where p(z) represents the probability of an object with associated

vector = to be a positive example of P.
During the learning process, an observation consists of a completely or incom-

pletely specified feature vector ;‘G Q* = {0, 1,*}* and a value h =” +” if the
observed example belongs to the concept and h =” — ” if it does not. Note that

each 7 € Q* represents a subset C—+ = {ze Q/z; =z} if 2} £7*”, Vi}. A vector

7 € Q* is called total if every variable is determined, i.e. if e Q, otherwise it is
called a partial vector. Functions m and p can be easily extended to 2*:

(1) mz )= Y m); vieq

Z7€C—e
x
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and

-

Tz m@RE)
= ; Vz e

(2) )= —
=) m(z)

During the learning process, observations are obtained. After a number of
observations n, or after a time 7 having a random number of observations n,, the

learning process stops and deduces a program that computes a function q(?) for
every € Q. The function ¢(z) (an estimate of p(z)) is the learnt concept, and

we can use it only to guess the probability that a real object with feature vector z
belongs to the concept.

The goodness of q(;) is measured by the expected value of a loss function
r(p(Z), ¢(z)), and it is given by

3) L(q) = E[r(p(3), 4(3))] = 3 m(Z)(p(3), 4(3))

€N

We say the accuracy of ¢(Z) is € if

(4) > m(@)r(p(3), o(3)) <.

zen

Since the observation process is random, we cannot assure an accuracy € with
probability 1 for arbitrarily small e. We can only give a level «, and assure that

(5) Pr( Y m@)r(p(@), 4(3) <¢| 21—,

Teq

where Pr means the probability distribution of the sampling process.
Some important loss functions are:
(i) Bounded square:

0, if 22<6?
ri(z) = , then
; 2 2
(6) 1, if 2°>94
Li(g) = > m(z).

(p(z)~q(7))2>62
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(i1) Quadratic loss:

ro =22, then
™ L@ = Y m(3) (p(3) - () .
Ten

(iii) In the case we have to make a decision after observing the feature variables

Z of an object that it belongs to the concept or not, and we will lose 1 if the decision
is wrong, the optimal decision based on ¢(7) is

"4+ ifg(2) 2 5,

(8) d(g(z)) =

DO = N =

» =7 ifg(z) <

The corresponding loss function has two variables, and is:

. 1
z 1fv<—2-,
1 . 1
ra(z,v) = 3 1fv=§, then,
. 1
9 1-2 1fv>§;

L@= Y m@pE+ ¥ m@E0-p@ 45 3 mE)

o(z)<} o(7)>% o(z)=4%

The main problem in the theory of learnable (see Valiant [3]) is to find classes
of concepts that are learnable in feasible time. We extend Vailant’s definition of
learnability for probabilistic concepts in the following way:

Definition 1. Let F be a class of probabilistic concepts. Let r be a given
loss function, with associated parameter é < 0, and € > 0 and a < 0 denote the
accuracy and the level of learning. We say F is learnable from examples iff there
exists a polynomial G(u, v, w, z) and a learning algorithm A such that VP € F, with
associate function p, the algorithm A halts in time, or after observing a number of
examples, G(T(P), 671, 7!, a™!), where T(P) = t is a measure of the size of P,
and A outputs a function ¢, such that the concept Q, given by ¢ belongs to F, and

Pr (Z m(? r(p(;)), q(z), 6) < 6) >l-«

TeQ
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for every distribution m(z).
3. Learning algorithm

In this section we give two algorithms to learn a concept P, based on
multinomial and Poissonian sampling.

3.1. Multinomial sampling

We suppose that during the learning process observations are independent,
identically distributed random vectors, and that the probability of observing
{z,+) and {Z, -} are m(z)p(z) and m(z)[l — p(Z))], respectively. We also
assume that we have at hand a sample of n neutral objects not necessarily total.
In other words we can obtain the following set, given by the sample:

(10) S={nt/ze@ihe(+, -} X nb=n,

nhes

where n? is the number of objects in the sample of the type {z, h}.

Consequently, the likelihood function of the sample, which depends on the set
of parameters {p(z)/z € Q}, is given by

v =TT {er - sl } x

yeN

(11) n
x ]I (Zm(z)p(z))

yeN*-Q 2€C,

<+
v

( > m()[1~ p(z)])

2€Cy
and its logarithm becomes

L=logV =) {n]logp(y) + n; log[l — p(y)]}+
yen

(12)
+ ) {n; log [E m(z)p(z):l +n log [Z m(z)(1 —p(z))] }

yeN* -0 2€C, eC,
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By derivation we get the likelihood equations:

dL(q) _ n} ng

T

) " a2 1-¢@

(13)

* Z n;m(z) - ny miz) =0: z€Q
S| E m@@ T L m@I @] :
s zeCy 2€C,
where
(14) S.={3'en -0/ FeCr)

and ¢(z) is the maximum-likelihood estimate of p(z).
3.2. Poissonian sampling

Now we assume a Poissonian sampling of duration 7, i.e. that the random
variables n} and n_ are independent Poisson random variables with mean values

m(z)p(z)r and m(z)[1 — p(z)]r, respectively. We also assume that we can obtain
the following set, given by the sample:

(15) S‘—'{nz/zeﬂ'; he{+,_}}

where, as before, n} is the number of objects in the sample of the type {z, h}.
The likelihood function of the sample is

(16) V= H {exp{—rm(y)}[m'*(y)]":[m— (y)]";(r)nt-f-n; } )

sen nyny
n} ny
exp{ —1 3 m(z)p | & mt(z) Y ome(2)| ()
2€C, 2€C, 2€Cy
x ]I — ,

nygn

yeEQ*-Q vy

where

1mn) mt(y) = m(y)p(y); m (y) = m(y)[1 - p(y)].
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Eliminating constant terms in (16) we get (11). Thus, ¢(z) estimates coincide
in both sampling schemes.

3.3. Estimates for total sample vectors

If all vectors in the sample are total the system (13) becomes

+ - +
e i =0; zeQ=¢q(z) = i

(18) @ T-4@

n¥ 4+ nz

Note that g(z) is well defined unless n} + n; = 0. If this happens we shall do
¢(z) = 1/2. Thus, we have

n} e
m lf n: + n, > 0,
if z ¢ SQy;
19 z) =
(19) 9(2) 1 if n} +n; =0,
2
p(.l‘) if z € Q.

The probabilities associated with the two different cases in the above expres-
sion where z ¢ Q5 are 1 — [1 — m(z)]" and [1 — m(z)]", respectively, if we have
multinomial sampling and 1 — exp[—7m(z)] and exp[—7rm(z)], respectively, if the
sampling scheme is Poissonian. Thus, we can handle the random variable ¢(z) as
a linear convex combination of two obvious variables with the above probabilities
as weights.

4. Families of learnable concepts

In the following we shall assume that we have selected the bounded square loss
function (6).

In order to calculate the probability in expression (5), let us consider the
random variables

(20)

{ m(z) if [g(z) - p(2)]* > &
Zy = T €N

0 otherwise

and let us call

(21) 8() = Pr[Z; = m(2)] = 1 - Pr{~6 < g(z) - p(=) < 4.
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Note that

(22) Ll(q) = Z Zs .

TEN

The mean values of Z, and L,(q) are

(23) E[Z:) = m(z)s(z); E[Li(g)) = Y_ m(z)s(z).

€N
With this, (5) becomes
(24) PrLy(g) <¢]21-a.

Taking into account the Markov inequality

PiLi(@) < ) 2 1- ZEE _ ot 57 ma)s)
€N

it follows that if we can prove for n > N (or 7 > T))

(25) E m(z)s(z) < ea

TEN

then our concept can be learnt in time N (or T).

The approximation of s(z) is based on the following properties of the relative
frequency. Let A be one of the possible outcomes of an experiment, and
1> p = P(A) > 0, and denote by (,(p) the relative frequency of A after a sequence
of n independent experiments. From Bernstein’s improvement of the Chebyschev
inequality we get

Theorem 1. For 0 <y < p(1 — p)

n72

2p(1 - p) (1+ ﬁ_—pj) ‘

From this theorem easily follows that for 5> 0, 0 <y < p(1 — p) and

2log (%)

n> —37—2— =no(7,8)

P[l¢a(p) — Pl > 7] < 2exp |-



The problem of learning concepts. A probabilistic view 187

we have
(26) P[i¢n(p) =Pl 2 7] < 8.

In order to calculate s(z) we shall modify expression (19) in the following way:

( +
6 if Zli<6+é,
ne 2
+ +
(27) gz)={ 2= if 6+§<"_=<1_5_f,
ng 2" ng — 2
+
1—6 if " sq1_5_2
\ N 2

ifn,, Zno (g,&l)

The estimation of s(z) from above is based on the inequalitiy
s(z) = Prflq(z) — p(z)| > 8] <

<P lo() - (o) > 6 1 2 mo (5.51) |+

+Pr [nz < no (gﬁﬁ)] .

We shall prove that using (27) the following estimation

]
(28) s(z) <P+ Pr [n: < ng (§ ) ﬁl)]
holds for all the three cases in (27).
Case (a):
.. nt 6
lg(2) = p(2)| = |6 = p(2)] if —=<é+45.

So, if p(z) < 26 no contribution to s(z) exists.
For p(z) > 26 from inequality (26)
)
ng > no (-2', ﬂl)l =

nz 2 ng (g‘,ﬂl)] <Bi.

Pr [Iq(z) - p(z)| > 6

o6
=Pr[p(z)—z—’>§
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Thus, (28) is satisfied for all 0 < p(z) < 1.
Case (b):

nf . 5§ nf P
- = |— — — < —_— < —_— -_——
lg(z) = p()I s p(z)| if 6+ 5 S n S 1-6-3

From inequality (26),if 6 < p(z) <1-46

ng > ng (g’ ﬂl)] <

ny 2 ng (g,ﬂl)] <Bi.

Pr [IQ(@‘) -p(z)| > 6
Pr [ nt )

> —
=2

—= —p(z)

T

If p(z) < 6, then

Pr qu(z) —-p(z)| > 6

ng > ng (g,ﬂl)] <
ng > ng (g,ﬂl)] <

ntzno(g)ﬂl)] Sﬂl)

and similarly, if p > 1 — 6§ we have the same inequality.
Thus, (28) is satisfied for all 0 < p(z) < 1.

Case (c):

Pr i(,.: (p(a:)) > 6+ g

[ 5
Pr{(n, (8) > 6+ 3

. nt )
la(z) —p(z)| =1 -6 -p(z)| if =>1-6-;.
ng 2

Now, similarly to Case(a), we have that (28) is satisfied for all 0 < p(z) < 1.
From (19) and (28) we get

@) Y m@s@<h+ 3 mprne<n(5.0)]-

€U, TENLUN,
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If we now sort the values m(z) into increasing sequence

m(z;) < m(z2) < ... < m(zq.14i0.)) »

and let for L

L-1 L
(30) E m(z;) < B2 < Zm(z;)
i=1 i=1
then P P
> 2> 2 i >
m(z;) > T 2 i+ 0] for i>L

From (29) and (30) we get

(31) ze‘%ﬂl m(z)s(z) <y + B + ; m(z;)Pr [n < mo (gpl)]

4.1. Multinomial case

If we are in the multinomial case, let u denote a negative binomial, N B(k, p),
random variable, that is with probability mass function

Plu=k+1]= (k:fz l)p"(l—p)‘ for £=0,1,...

Then, with £ = ng (g, ﬁl) and p = , since m(z;) > p, we have

B2
[Q0o] + ||
6 ,
Pr [n,,,. < ng (i'ﬂl)] <Plu>n] for i>L.
Using the Chebyschev inequality and E(u) = k/p and D?(u) = k(1 — p)/p?,
we get

Plu>n]< B3 for n>§+ﬂ3-%—vk(;—?)

for this, it follows that for

n>no (506 (9l +10a) 577 148530 (5,8)] and 222
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we have
)
(32) Pr [n < no (5 , ﬁl)] < fs.
Combining (31) and (32) we get

(33) " m(z)s(z) < B+ Ba+ Y m(zi)Bs < By + P+ B,

z€QUN, i>L
Now, choosing arbitrarily the weights
Nn+r+ra=1

and
B =mea, P2 =7Ea, fB3=7v3Ex

we satisfy (25) with

6 —1 / - -1 6
N >ng (5,716‘&) (|190] + |]) (y2¢a) kl — (v3€a) %no 2 (§ , 'nea)) =

) 8log 2
(34) =—f—(—’-‘—‘i'2(mol+|nl|) 1+ V36 =

382ysea \/ 87sca log (-y,zea )

2
_ |90l + 19| | 8lo8 (712“’) 4 8log (’hw)
T byeea 36 V373ea

From (34) we get the following theorem.

Theorem 2. A general class of concepts F given by the parameters |Qo| and
|2 is learnable iff there ezists a polynomial Q(z) such that ||+ || < Q(t) for
the whole class.

The only if part of the theorem is obvious for the kind of concepts where p(z)

is restricted to be outside of the interval [g, 1- g] and m(z) = (|Q| + |)~"
for z € Qo U Q.
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4.2. Poissonian case

If we are in the Poissonian sampling case, a Gamma variable 4 = G(k, A) with

_ 6 _ B2
k=mng <§, ,61) and A= —————|00|+ ]

must be used instead of a Negative Binomial random variable. Then from the
Chebyschev inequality and E[u] = k/A and D?(u) = k/A? we get

Plu<n]<pBz for n>— +ﬂ3%\/_

which also leads to (34).
5. Examples of application

In order to illustrate the application of the above results, we give the following
two examples.

Example 1. Assume a population of patients (objects) in a hospital which
are defined in terms of three different binary symptoms (feature variables): ”pain”,
”weight loss” and ”vomits”. We define the concept ”gastric adenocarcinoma” and
we find that the probabilities m(z) and p(z) are those given in Table 1, where
P ,W and V refer to pain, weight loss and vomits, respectively. Figure 1 shows the
gastric adenocarcinoma concept (shaded region) and the values of m(z)p(z) and
m(z)[1 — p(z)] associated with the corresponding combinations of symptoms.

z=(P,W, V) m(z) p(z)

(0,0,0) 0.06 0.001
(0,0,1) 0.14  0.002
(0,1,0) 0.06 0.002
(0,1,1) 0.14  0.998
(1,0,0) 0.09  0.002
(1,0,1) 0.21  0.998
(1,1,0) 0.09 0.997
(1,1,1) 0.21  0.999

Table 1. Values of m(z) and p(z) for the adenocarcinoma concept
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Figure 1. Adenocarcinoma concept and values of m(z)p(z) and m(z)[1 — p(z)]

If we want to learn a concept like gastric adenocarcinoma, the é-error need
not be related to the lowest or highest level of p(z). It is related to the level of
the low and high probabilities. If it is important to distinguish p(z) = 0.01 from
p(z) = 0.0001, then we need & < 0.005. It depends, of course, on the medical
doctor whether he considers p(z) = 0.01 a low probability or not.

In this case || = 0 and |;] = 8 and we assume a = 0.05, ¢ = 0.05 and
6 = 0.02. Using now expression (34) we get n = 573878666.

Example 2. Figure 2.a shows the security mechanism of a room which is
composed of two subsystems. The first, C, consists of a video-camera which
transmits the image to a computer for analysis. After the analysis, the computer
decides whether or not to activate a relay which closes an electric circuit with
a battery activating an alarm. The second, F, consists of a photoelectric cell, D,
which closes another electric circuit £ with an alarm activated by a battery. Figure
2.b shows the rules associated with the alarm system. Note that the first system
has been simplified to hardware plus software, and that rules are interpreted in a
weak sense (conclusions are very likely but not sure).
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Figure 2. Security system: rules and influence diagram

Table 2 shows the probability distribution m(z) where z € {0,1}*. The
components of vector z are associated with components A, B, D and F. The value
1 indicates that the associated element works correctly and the value 0 that it fails
to work. Probabilities p1(z), p2(z) and p3(z) define the concepts C, F and G,

respectively.

z=(A,B,D,E)
(0,0,0,0)
(0,0,0,1)
(0,0,1,0)
(0,0,1,1)
(0,1,0,0)
(0,1,0,1)
(0,1,1,0)
(0)1)1)1)
(1,0,0,0)
(1,0,0,1)
(1,0,1,0)
(1,0,1,1)
(1,1,0,0)
(1,1,0,1)
(1,1,1,0)
(1,1,1,1)

m(z)  pi(z)  pa(z)
0.0144  0.001  0.000
0.0216  0.001  0.002
0.0336  0.002  0.000
0.0504  0.001  0.998
0.0336  0.001  0.000
0,0504 0,002 0,000
0.0784  0.001  0.001
0.1176  0.001  1.000
0.0216  0.001  0.000
0,0324  0.001  0.000
0.0504  0.001  0.001
0.0756  0.001  1.000
0.0504  0.998  0.001
0.0756  0.998  0.000
0.1176  0.999  0.000
0.1764  0.998  0.997

p3(z)
0.00
0.00
0.00
1.00
0.00
0.00
0.00
1.00
0.00
0.00
0.00
1.00
1.00
1.00
1.00
1.00

Table 2. Values of m(z) and values of p(z) for three different concepts

The required samples sizes to learn the concepts C, F and G for a = 0.05,
B = 0.05 and § = 0.02 are n = 11477573329. Note that here we have {|Q| =
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0, || = 16}, {|Q%0| = 10, || = 6} and {|Q0| = 16, |Q| = 0}, for concepts C, F
and G respectively.

This security mechanism is the implementation of the Boolean function
(21 A z2) V (23 A z4) with some small probabilistic bias A. This means p(z) < A
corresponds to a false value, 1 — p(z) < A corresponds to a true value. Now,
learning means: find a Boolean function acceptable with A bias, or show some
significant error. The acceptable bias A is limited by the é parameter of the
learning algorithm. For example choosing a small bias by é = 0.0001 (which is
not small for testing an integrated circuit), the volume of the required sample size
becomes extremely large: n > 39880407899885.

From our numerical examples it turns out that the required sample size might
be extremely large for practical application. So we have to give a warning for
applications: in spite of the polynomiality the accuracy and the level of the learning
cannot be chosen arbitrarily. When the number of observations is limited, we
cannot continue the automatic, algorithmic learning, the experts have to search for
new feature variables.
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