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QUADRATIC RESIDUES AND
RELATED PROBLEMS

Bui Minh Phong (Ho Chi Minh City, Vietnam)
J.P. Jones (Calgary, Canada)

I. Introduction and basic properties

For each odd positive integer n we denote by (%) the Jacobi symbol, that is

(%): I1 (:—)) if (z,n)=1

pelln

and (z/n) = 0 if (z,n) > 1, where (z/p) is the Legendre symbol. Recently, we
proved in [1] that for every fixed relatively prime positive integer n and j there is
a positive integer a such that

(1) (a,n)=1 and (“2_j2>=—1

n

if and only if (n,3) = 1 and n is not a square. Our purpose in this note is to
consider a similar problem, when a% — j? is replaced by P(a), where P(z) is a
polynomial with integer coefficients. We shall obtain a complete solution for the
case when P(z) = Az? + Bz + C.
Let
P(z)=Ao+Aiz+ ...+ Apz™ (m2>1)

be a polynomial of degree m with integer coefficients. We shall denote by N(P)
the set of all odd positive integers n for which (P(c),n) = 1 holds for some integer
c. For a positive integer n let

n=p...pd

be the canonical representation of n as the product of prime-powers. It is obvious
that
n€ N(P) if and only if p;€ N(P),...,p,€ N(P),
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moreover for a prime ¢ we have
g ¢ N(P) if and only if P(z) = (z?—z)P'(z) + qR(z),

where P’(z), R(z) are polynomials with integer coefficients and degR(z) < ¢ — 1.
Let w be an integer whose possible values are +1. Let G,, = G (P) denote the set
of all ne N(P) for which there is a positive integer a such that

(2) (P(a),n) =1 and (M)zw.

n

Let
G(P)=Gi((P)NG_1(P) and G, (P)=Gu(P)\G(P).

For each positive integer n let k(n) denote the square free kernel of n. Then
n can be represented in the form n = k(n) - m?, where k(n) is square free and m is
an integer.

Lemma 1. Let P(z) be a polynomial with integer coefficients and let n€ N(P).
Then
n € Gy(P) if andonlyif k(n)€ Gy(P).

Proof. It is obvious that n € G, (P) implies that k(n) € Gw(P).
Assume that for a positive integer n€ N(P) we have

(3) k(n) € Gy (P).
We can write n in the form n = kM2N2, where k = k(n), (k,M) =1 and k, N

have the same prime divisors. From (3) one can deduce that there exists a positive
integer b such that

@) (PG),E) =1 and (@):w

Since n€ N(P) and n = kM2N?, we have M€ N(P). Thus there is an integer ¢
such that

(5) (P(c), M) = 1.

Let ¢ be an integer which satisfies (5). Since (k, M) = 1, there is a positive
integer h such that

(6) kh+b=c (mod M?).
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Let a := kh + b. By using (4) - (6), we have

(P(a),n) = (P(kh +b),kM?N?) = 1

(5)- (22)(5) (8- (429 -

These imply that n € G, (P). The proof of Lemma 1 is completed.

Lemma 2. Let P(z) be a polynomial with integer coefficients and let
nme€ N(P). Assume that w, w' € {1,-1}. If

k(n) € Gu(P), k(m) € Gy/(P) and (k(n),k(m)) = 1,

then nm € Gy (P).

Proof. In order to prove Lemma 2 by using Lemma 1 it suffices to show that
k(nm) € Gyuw'(P). First we note that from our assumptions k(n) € G, (P) and
k(m) € Gy (P), there are positive integers u and v such that

(P(u), k(n)) =1 and (f((:)))=w

and

—1 and (E®Y_ .
(P(v),k(m)) =1 d (k(m)) .
By using (k(n), k(m)) = 1, we can choose a positive integer ¢t such that
k(n)t+u=v (mod k(m)).
Let a := k(n)t + u. Then
P(a) = P(u) (mod k(n)) and P(a)= P(v) (mod k(m)).
These imply
(7) (P(a), (nm)) = (P(a), k(n)k(m)) = 1

and

® ()= (5 (53) = (3 (£8) = v
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Thus, (7) and (8) show that k(nm) € Gy (P). This completes the proof of Lemma
2.

Lemma 3. Let P(z) be a polynomial with integer coefficients and let p be a
prime for which p€ N(P). Then

P € Gi(P)UG-1(P).

Proof. From the condition p€ N(P) it follows that there is a positive integer
¢ such that (P(c),p) = 1. Thus, we have either

(501 = (82)=-

from which p € G1(P) U G_1(P) follows.

By using Lemma 3, we see that every positive integer n > 1 with condition
n€ N(P) can be represented in the form

9 n=nngn_i,
where every prime divisor p of n; (resp. n_,) satisfies p € G}(P) (resp. G*(P))
and every prime divisor q of ng satisfies ¢ € G(P). Hence G}, (P) = G (P)\G(P)
and G(P) = G1(P) N G_1(P). It is obvious that

(10) (n1,ng) = (n1,n_1) = (ng,n-1) = 1.

Theorem 1. Let P(z) be a polynomial with integer coefficients. Let n > 1 be
an integer for which n€ N(P) and let n = nyngn_, be the representation of n in
the form (9). Then we have

(I) neG(P) if k(ng)>1
(II) n€Gu(P) if k(n_1)€ Gu(P).

Proof. We first note by (10) that
k(n) = k(n1)k(ng)k(n-1).
(I) Assume that k(ng) > 1. Then by Lemma 2 it is easily seen that
k(ng) € G(P) and k(n) € G(P).

Thus, by Lemma 1, we have n € G(P).
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(II) Assume that k(ng) = 1. Then k(n) = k(n;)k(n_,), and so by Lemma 2
k(n1) € G1(P)
and
k(n) € Guw(P) if k(n_1) € Gu(P)

follow. From Lemma 1 the proof of Theorem 1 is finished.
II. Applications to the polynomial P(z) = Az? + Bz + C

We shall apply Theorem 1 to get a complete solution for the case when P(z) =
Az? 4 Bz + C. First we prove

Lemma 4. Let P(z) = Az?+ Bz + C be a polynomial of degree 2 with integer
coefficients and let A = B2—4AC. Let p be an odd prime for which (p, A, B,C) = 1.
Then we have p € G(P), except the following cases:

() »l(4,B),

() p|lA and A # 0 (mod p),

(c) p=3if AA#0 (mod 3) and (A/3) = 1.
If p satisfies (a), (b) and (c) respectively, then

pE GZC/p)(P)) PE GZA/p)(P) and p=3¢€ Gi(A/a)(P),

respectively.

Proof. Let p be an odd prime for which (p, A, B,C) = 1.
By using
P(z)= Az’ + Bz + C

and
(11) 4AP(z) = (2Az + B)? — A,

it is easily seen that
PEGlap(P) if pl& and A0 (modp),
p=3€GL 3(P) if AA#O0(mod3) and (A/3)=1

Assume now that (a), (b) and (c) are not satisfied.

If A =0 (mod p), then B # 0 (mod p) and P(z) = Bz + C (mod p). In this
case one can deduce that p € G(P), because p > 2.
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Assume that A Z 0 (mod p). Then A # 0 (mod p).

A
If ;) =1, then p > 3 and A = j2 (mod p) for some positive integer j with

(p,7) = 1. Thus, from a result of [1] mentioned above and using (11), we have
P € G_(a/p)(P)- On the other hand, since p > 3, there is a positive integer h such
that

D) o,

(12) (h(h+1),p) =1 and ( ’

Indeed, we can choose h as follows: h = 1if (2/p) =1; h =2if (2/p) = (3/p) = -1
and h = 3 if (3/p) = 1. Let d be a positive integer such that

2Ad+ B = j(2h + 1) (mod p).
Then from (11) we have
4AP(d) = (2Ad + B)? — A = 45%h(h +1) (mod p),

which with (12) implies that p € G(a/p)(P). Thus, from p € G_(a/p)(P) and
P € Gasp)(P) it follows that p € G(P).

Finally, let A # 0 (mod p) and (%) = —1. Then it is easily seen that the
following (p + 1)/2 numbers
_Aa IZ_A)"') [(p— 1)/2]2_A

are incongruent (mod p) and # 0 (mod p). Thus, there are integers y;, y2 such
that

v - A
p

(13) (¥} -24,p)=1 and ( ) =(-1)" (i=1,2).

Let z; (i = 1,2) be such integers which satisfy
2Az; + B=y; (mod p).

Then
4AP(z;) = (24z; + 1) - A =y? —= A (mod p),

and so by (13) we have p € G(P).
The proof of Lemma 4 is finished.
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Let B(P) denote the set of all odd primes p which satisfy one of the conditions

(a), (b) and (c), i.e.
(e) pl(4,B),

(b) plA and A# 0 (mod p),
(c) p=3if AA#0 (mod 3) and (A/3) = 1.
By using Lemma 4, we can define a function ¢ : B(P) — {1, —1} by the relation

1
t(p) = {
-1

From Theorem 1 and Lemma 4 we have

Theorem 2. Let P(z)
integer coefficients and let A
(n,A,B,C)=1. Then

if peG;(P)

(p € B(P)).
if pe G (P)

Az? 4+ Bz + C be a polynomial of degree 2 with
B? — 4AC. Let n be an odd positive integer with

(i) if there is a prime q ¢ B(P) such that g|k(n), then n € G(P);,
(it) ifk(n) =p1...p, with py,...,p, € B(P), then

n € Gipy)..1(p)(P):
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