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AN ASYMPTOTIC APPROACH TO THE
MULTIPLE MACHINE INTERFERENCE PROBLEM
WITH MARKOVIAN ENVIRONMENTS*

Jénos Sztrik (Debrecen) and Brian D. Bunday (Bradford)

Abstract. This paper is concerned with a queueing model to analyse the
asymptotic behaviour of the machine interference problem with N machines
and n operatives. The machines and the repair facility are assumed to
operate in independent random environments governed by ergodic Markov
chains. The running and repair times of machines are supposed to be
exponentially distributed random variables with parameter depending on
the number of stopped machines and the state of the corresponding varying
environment. Assuming that the repair rate is much greater than the failure
rate (“fast” service), it is shown that the time until the number of stopped
machines reaches a certain level converges weakly, under appropriate norm-
ing, to an exponentially distributed random variable. Furthermore, some
numerical examples illustrate the problem in question in the field of textile
winding.

1. Introduction

The machine interfence model has been considered by a number of authors.
In its simplest form, where there are exponential running and repair times, a
fixed number of machines in the system and a fixed number of repairmen, the
problem is frequently used as a textbook example of a birth-death model or
a finite-source exponential queueing system. Many articles have generalised
this basic model by assuming, for example, general repair times, general
operating times, etc. For an updated review see Agnihothri [1], Carmichael
(6], Stecke and Aronson [12]. In recent years this model has been used, for
example, for the mathematical description of computer terminal systems, cf.
Takagi [15], or for modelling production systems in textile winding, see Bunday
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[4]. More recently several authors have tackled the problem for non-identical
set of machines. Among those contributing are Bunday and Khorram [5],
Sztrik [13,14], Tosirisuk and Chandra [16] in which an extensive bibliography
can be found on this topic. In these papers the main aim has been to
predict the steady-state operational measures, such as machine availability,
operative utilization, mean waiting time, average queue length. The diffusion
approximation, cf. Sivazlian and Wang [11], is based on the assumption that
the queue of failed machines is almost always nonempty, that is, we have a
heavy traffic situation. In this study another asymptotic approach, namely a
light traffic approximation is presented to analyse the distribution of the time
until the number of stopped machines reaches a certain level. This method is
quite common in reliability theory; see among others Anisimov and Sztrik (3],
Gertsbakh [8,9], Keilson [11]. Refinements in the model are often needed when
the system environment is subject to randomly occuring fluctuations which
appear as changes in the parameters of the model. These fluctuations may be
due to the weather, earthquakes, or other changes in the physical environment,
to personnel changes, to alteration of system usage intensity, etc., see Gaver et
al. [7].

This paper is concerned with a queueing model to analyse the asymp-
totic behaviour of the machine interference problem with N machines and n
operatives. The machines and the repair facility are assumed to operate in
independent random environments governed by ergodic Markov chains. The
running and repair times of machines are supposed to be exponentially dis-
tributed random variables with parameter depending on the number of stopped
machines and the state of the corresponding varying environment. Assuming
that the repair rate is much greater than the failure rate ( ”fast” service ),
it is shown that the time until the number of stopped machines reaches a
certain level converges weakly, under appropriate norming, to an exponentially
distributed random variable. Furthermore, some numerical examples illustrate
the problem in question in the field of textile winding.

2. Preliminary results

In this section a brief survey is given of the most related theoretical results,
mainly due to Anisimov, to be applied later on.

Let (X¢(k), k > 0) be a Markov chain with state space
m+1

UXe XinX;=0,i#j
¢=0

defined by the transition matrix ||p¢(i(9), j(*))|| satisfying the following condi-
tions:
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1. pe(i9, 5©) — py(i(?, j(), as ¢ — 0, i(?, j(®) € X;, and
Py = ||po(i?, j()|| is irreducible;
2. pe(,'(q),j(ﬁl)) = ea(q)(,‘(q),j(ﬁl)) + o(e), i e X, jlath) ¢ Xgt1;
3. pe(,’(q),f(q)) —0,as e — 0, i@, fO¢ X g2 1,
4. p (i, f)=0,iD e X, [ eX,, z-¢>2
In the sequel the set of states X, is called the g-th level of the chain,
g=1,...,m+ 1. Let us single out the subset of states

m

(am) = U X,

q=0

Denote by {m(i9)), i(® € X,;}, ¢ = 1,...,m the stationary distribution of a
chain with transition matrix

pe (19, ()
" 1- 3 e (19, k(m+1)) l

kM4 € X 4y

0 e X, iPeXx,, ¢z <m

Furthermore denote by g. ({am)) the steady state probability of exit from {a),
that is
ge(fam)) = D Yoo pe(it™, jm D),
iMeXm JMENEX M4

Denote by {mo(i(?), i®) € X,} the stationary distribution corresponding to Py
and let

To = {Wo(i(o)), i ¢ Xo}, 7‘r£") - {re(i(")),i(“) € X,},
be row vectors. Finally, let
AlD) = ”a(q)(,-(a),j(ﬁl))“, {9 e X,, jet e Xe41, 9=0,...,m

defined by condition 2. Conditions 1-4 enable us to compute the main terms

of the asymptotic expression for 7:" and ge({a)). Namely, we obtain

7O = 97 AOAD A0V 4 oed), ¢=1,...,m,

(1)
ge({am)) = €™M A AM) | A1 4 (g™,
where 1 = (1,...,1) is a column vector, see Anisimov et al. [2] pp. 141-153.

Let (ne(t), t > 0) be a Semi Markov Process (SMP) given by the
embedded Markov chain (X,(k), ¥ > 0) satisfying conditions 1-4. Let the
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times 7,(j(*), k(*))- transition times from state j(*) to state k(*)- fulfil the
condition

E exp{i0B: e (5, k))} = 1 4 aji (s, 2,0)e™ ! + o(e™*?), (2 =-1)

where f, is some normalizing factor. Denote by 2.(m) the instant at which
the SMP reaches the (m + 1)-th level for the first time, exit time from (am),
provided 7(0) € (am). Then we have:

Theorem 1. (c¢f. Anisimov et al. [2] pp. 153) If the above conditions are
satisfied then

lim E exp{i6f.Qe(m)} = (1 - A(8))7",

£E—

where

> (@i, k)a;.(0,0,6)
(9 k(®eX,

TeA A A(M)]

A6) =

Corollary 1. In particular, if aji(s,2,0) = i0mjr(s,z) then the limit is an
ezponentially distributed random variable with mean

> m(i@po(5, kK m;(0,0)
i@ k@ eX,

7o AAM) | A(m)]

3. The queueing model

Let us consider the machine interference problem with N machines which
are looked after by n operatives. The machines are assumed to operate in a
random environment governed by an ergodic Markov chain (§;(t), ¢t > 0) with

state space (1,...,r1) and with transition density matrix (a;;, 1,5 =1,...,7,
aii = Y a;j). Whenever the environmental process is in state i and there are s
i#i

machines stopped, s = 0,..., N — 1, the probability that an operating machine
breaks down in the time interval (¢,¢ + h) is A(4, s)h + o(h). Each machine is
immediately repaired if there is an idle operative, otherwise a queueing line
is formed. The service discipline is First Come-First Served (FCFS). The
repair facility is also supposed to operate in a random environment governed
by an ergodic Markov chain (§5(¢), t > 0) with state space (1,...,r;) and
with transition density matrix (big, k,q =1,...,72, bex = Y bry). Whenever
q#£k
the environmental process is in state k and there are s machines stopped,
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s =1,..., N, the probability that the repair of a given machine is completed in
time interval (¢,t + h) is u(k, s;€)h + o(h). After being repaired each machine
-immediately starts operating. All random variables involved here and the
random environments are supposed to be independent of each other.

Let us consider the system under the assumption of “fast” repair, i.e.,
u(k, s;€) — oo as € — 0. For simplicity let u(k, s;€) = p(k,s)/e.
Denote by Y, (t) the number of stopped machines at time ¢, and let

Qe(m)=inf{t: t >0, Ye(t) =m+1]|Y,(0) <m},

that is, the instant at which the number of stopped machines reaches the (m +
1)-th level for the first time, provided that at the beginning their number is
not greater than m; m=1,... /N — 1.

Denote by (7r(1), t=1,...,m), (1r(2) k = 1,...,ry) the steady-state
distribution of the governing Markov chains (ﬁl(t) t > 0), (6t),t > 0),
respectively. Now we have: ‘

Theorem 2. For the system in question under the above assumptions, inde-
pendently of the initial state, the distribution of the normalized random variable
e™Q(m) converges weakly to an ezponentially distributed random variable with
parameter

A=N Z: Z 7l'(1) (2)/\(3 0) H mln(n ss))/:‘((zks:)

=1 k=1

Proof. It is easy to see that the process
Ze(t) = (1(2),62(2), Ye (1))
is a three-dimensional Markov chain with state space
(G, ky8), i=1,...,7, k=1,...,r9, s=0,...,N).
Furthermore, let
(am) = ((4, k,5), i=1,...,r, k=1,...,ry, s=0,...,m).

Hence our aim is to determine the distribution of the first exit time of Z,(t)
from (a,,), provided that Z, (o) € (am).

It can easily be verified that the transition probabilities in any time interval
(t,t + h) are the following:

(j,lc,s) ai.ih"' O(h), 3#]:
(4,k, ) h (4,9,8) big + o(h), k#q,
v (i, k,s+1) (N —s)A(4, 8) h + o(h), 5=0,...,N-1,
(i,k,s — 1) min(n,s)(u(k,s)/e)h+o(h), s=1,...,N.
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In addition, the sojourn time 7.(i, k, s) of Z.(t) in state (¢, k, s) is exponentially
distributed with parameter

aii + bex + (N — s)A(Z, s) + min(n, s)u(k, s)/c.

Thus, the transition probabilities for the embedded Markov chain are

pellik o), G ko9 = L p R G, o) i, R CE, 97

big
ai; + bex + (N — s)A(4,s) + min(n, s)u(k,s)/e’
fors=0,...,N,

pe[(i’ k,s), (iv 9 s)] =

(N —s)A(4,5)
aii + bk + (N — 5)A(4, 5) + min(n, s)u(k, s)/e
fors=0,..., N-1,

pe[(3, k, 8), (3, k, s+ 1)] =

min(n, s)u(k, s)/e
aii + bkx + (N — s)A(i, s) + min(n, s)u(k,s)/e’

pe[(3, k,8), (i, k,s — 1)] =

fors=1,...,N.
As € — 0 this implies
a@is
. k : — ]
Pe((i, k,0), (5, k,0)] aii + bex + NA(¢,0)’
bkq

Pl k,0), (5,0, 00l = T G 0y

pel(ik, 8),(j,k,8) =0o(1), s=1,...,N,
pel(ik, 8),(i,q,8)] =o(1), s=1,...,N,

Pel(isk, 0),6, 5, 1)] = o— ;:’:ii» ]%)A(i’ 5

Pel(ik,s), (i, k,s —1)] =1, s=1,...,N.

(1+4+0(1)), s=1,...,N -1,

This agrees with the conditions 1-4, but here the zero level is the set

((,k,0), G, k, 1), i=1,...,r, k=1,...,r)
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while the g¢-th level is the set
((i,k,q-l-l), i=1,...,r, k= 1,...,1‘2).

Since the level 0 in the limit forms an essential class, the probabilities 7o(, k, 0),
mo(i,k, 1), i =1,...,r, k=1,...,ry satisfy the following system of equations

70(j,4,0) = D mo(i, g, 0)asj /(ais + by + NA(, 0))

i#£]
(2) '
+ 3" mo(4, k, 0)beg/(aj; + bk + NA(S,0)) + 7o(j, g, 1),
k#q
(3) 7r0(ja q, 1) = ”U(jv q, O)N’\(]! 0)/(aJJ + bqq + N’\(j’ 0))
It is clear that
AN
(4) wgl)ajj = Zr'(l)aij, w,(lz)b“ = Zwﬁz)bkq.

i#j k#q
It can easily be verified, that the solution of (2), (3) subject to (4) is

wo(i, k, 0) = BrVal® (ai; + b + NA(5,0)),

(i, k, 1) = Bx") (2)N,\(z 0),

where B is the normalizing constant, i.e.

1/B = Ezr(” 7Plaii + bk + 2N (3, 0)].

i=1k=1

By using formula (1) it is easy to show that the probability of exit from (a,,)

is

sel{om) = "N B 30 Yo HVnDA, 0 II — DG, s))a +o(1).

& mln(n s)u(k

Taking into account the exponentiality of 7.(j, k, s) for fixed 6 we have

i0
ajj +bex + NA(5,0
E exp{ie™07.(j,k,s)} =1+ 0(c™), s>0.

Eexp{ic™0r.(j,k,0)} =1+¢™ )(1 +o(1)),



142 J. Sztrik and B.D. Bunday

Notice that f. = €™ and therefore from Corollary 1 we immediately get
the statement that €™$Q.(m) converges weakly to an exponentially distributed
random variable with parameter

—8)A(s, s
A= NZZ‘II’(I) (2)A(l 0) H mln(n s))p((k z)

i=1k=1

which completes the proof.

Consequently, the distribution of the time until the number of stopped
machines reaches the (m + 1)-th level for the first time, can be approximated
by

P(Qc(m) > t) = P(e™Q(m) > e™t) =~ exp(—e™Ab),

i.e. Q¢(m) is asymptotically an exponentially distributed random variable with
parameter ¢€™A. In particular, for m = N — 1, which means that there is no
operating machine, we have

* = N-1 SN (1) () Al s)
A" =eNTIA =€V n|nNn T oL MmO A(zO)H (e s)

i=1 k=1
) S s
(1) (2) HS
n'nN n-1 ;;W A(3,0) H u(k, s)/e’
In the case when there are no random environments we get
N-1
A(s)
V= O 1 e

where
A(s) = A(3,8), i=1,...,r1, p(s) =upk,s), k=1,...,r;
Finally, for the simplest case we have:
. N! A N1
(6) A" = ninN-n-1 (”_/5) :
Hence the steady-state probability Qw that at least one machine works is

eN-1A

1 A (21
it L

(7 Qw =
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1
Y T (1) (2 m St aG, & (2 '
1+ W%:'T (‘Z:l k; 7".( )"Sc ))‘(',0) ’I;Il m,(—,’y}?) (kgl 7’5: )—(p k'_j,k' 7:)

In the case when there are no random environments we get

1

N .
N! A(s—1)
1+ ninN-n ’l;ll u(s)/e

Qw =

Finally, for the simplest case we obtain
1

(8) Qw =

4. Some numerical results and applications
in textile winding

In the context of the production department on the factory floor, most
manufacturers will seek to establish a constant and optimal environment in
which the various processes can be carried out. They will try to avoid the
random environment. However, we do not live in the ideal world and variations
in the repair rate and the breakdown rate will occur in spite of their best efforts.
Machine operatives will feel “below par” with physical or mental problems from
time to time and this in turn will affect their work rate. Their attitude to work
at the start of a shift will be very different from their attitude just prior to
the tea-break, just after the tea-break and again before the end of their shift.
Of course, one could argue that the latter changes are more deterministic than
random, although variations among workers will tend to make the overall effect
more random than it might appear to be at first sight. The use of robots, and
there is a marked trend in this direction in many industries, seeks to avoid
these effects. The machinery used will suffer from minor faults due to wear and
tear. These, although they may not in themselves constitute a breakdown, will
have an adverse effect on the stoppage rate of the process. Another reason for
variability in the stoppage rate arises from the quality of the raw materials used.
This material may have been produced at an earlier stage in the production
process, and unless very stringent quality control procedures have been used
some variability is inevitable. In the particular case of the textile industry,
especially where natural fibres such as wool or cotton are being used, variability
between batches of raw yarns is difficult to avoid. Although it is not possible to
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generalise, because of the great variety of industrial production processes which
exist, if the unit of time is taken to be the average repair time, then the average
run time between successive stoppages due to yarn breaks of a single machine
might be anything from about 20 time units to 100 time units. The idea
of “fast” repair would therefore seem to be reasonable. However, the factors
mentioned earlier could easily cause deviations of the order of 10% to 50% of
these times. We do not underestimate the practical difficulties of modelling
these features of real manufacturing processes. The random environment idea
would seem to be a first step in the right direction.

In this section some numerical examples are given to illustrate the problem
in question and the asymptotic results are compared to the classical exact
formulae as well as the numerical ones obtained by Gaver et al. [7].

Case 1. In this section we illustrate how ”good” the asymptotic results are by
comparing them to the exact ones.

N!

n!nN;—" pN Py ( from Palm-formula ).

A
H =—and Pw =1—
ere p #/Ean W

With n = 3 using (8) we get the following results (see Table 1).

We can see how Qw depends on N, p and how accurate it is. It should be
noted that the greater the N the less the p for an acceptable approximation.

Case 2. In this section we show how the system behaves for different values of
p. Forn =3, A =1, u/e = 10 and 20 by using (6), (8) we obtain the following
results (see Table 2).

p=0.1 p =0.05
N Qw 1/A* Qw 1/A*

5 0.999977778 1500.00 0.999999305 24000.00
10 0.999999973 1205357.14 1 617142857.00
15 1 81280326.80 1 1.3316 E 12

Table 2

We can observe that in each case Qw and 1/A* increase as we expected,
but for p = 0.05 the increase in 1/A* is very sharp.

Case 3. In this section only the machines operate in a random environment
and the failure rates as well as the repair rates do not depend on the number
of failed machines. We compare the asymptotic result to the numerical one
obtained by Gaver et al. [7] and show how it depends on the intensities of the
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N=5 N=10
p Pw Qw Pw Qw
1 0.936305732 0.310344828 0.950122023 3.60304257 E-3
2-1 0.991023339 0.988558352 0.997252877 0.956928378
22 0.999290680 0.999939722 0.999974028 0.999992674
2-3 0.999962376 0.999999686 0.999999921 0.999999999
24 0.999998435 0.999999998 1 1

275  0.999999943 1
276 0.999999998 1
2-7 1 1
N=15 N=20
P Pw Qw Pw Qw

1 0.950212859 2.43840386 E-6 0.950212932 3.18484253 E-10

2-1 0.997516417 0.324055259 0.997521227 1.99972276 E-3
22 0.999991894 0.999989390 0.999993701 0.999920681
2-3 0.999999998 1 1 1
27t 1 1
N=25 N=30
P Pw Qw Pw Qw

1 0.950212932  1.21387279 E-14  0.950212932  1.72490449 E-19
2-1  0.997521248  2.44384274 E-6 0.997521248  1.11126125 E-9
272 0.999993850  0.997971651 0.999993856  0.877439658
2—% 1 1 1 1

Table 1
governing Markov chain (see Table 3). Here Qw = 1— gc({(en)) and Py is the

steady-state probability that at least one machine works obtained by Gaver et
al. [7].
N =5 m=4, rn=2 ro=1
A1) =012 oY =2/3 X2,)=006 =) =1/3

u(l,)/e=1.00 =P =1

where A(4,.) = A(4,s — 1), p(1,.) /e = p(1,s),i=1,2,s=1,...,5
We can observe that the corresponding probabilities are exact up to almost

3 digits while the mean failure-free operation time is very small compared to
Gaver et al. [7] where 1/A* = 1500.
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an a22 Qw 1/A* Pw Qw

50 100 0.99798  494.61  0.99932  0.99997

0.5 1 0.99798 49461  0.99925  0.99879

0.05 0.1 0.99798 494 61 0.99908 0.99810
Table 3

Case 4. In this section we approximate the results of Gaver et al. [7]) by
changing the service rate (see Table 4). The other parameters are the same as
Case 3.

u(1,)/e=1.00 = =1

an az2 Qw 1/A* Pw Qw

50 100 0.99946 1412.68 0.99932 0.99999

0.5 1 0.99946 1412.68 0.99925 0.99958

0.05 0.1 0.99946 1412.68 0.99908 0.99934
Table 4

This example illustrates that with this service rate we get almost the same
results as Gaver et al. [7] but here the formulae are much simpler and we do
not need numerical procedures.

Case 5. In this section a general setup is considered. On the one hand we
investigate the system’s behaviour as a function of the number of repairmen and
on the other hand we show how the mean failure-free operation time increases
as the failure level increases.

N=5, 1’1=2, 1‘2:2

A(1,0) = 0.12, A(1,1) = 0.13, A(1,2) = 0.14, A(1,3) = 0.15, A(1,4) = 0.16
A(2,0) = 0.06, A(2,1) = 0.07, A(2,2) = 0.08, A(2,3) = 0.09, A(2,4) = 0.1

AN =2/3 «M=1/3

p(1,1) = 1.35, pu(1,2) = 1.36, u(1,3) = 1.37, u(1,4) = 1.38, u(1,5) = 1.39
p(2,1) = 2.35, u(2,2) = 2.36, p(2,3) = 2.37, p(2,4) = 2.38, pu(2,5) = 2.39

‘n'?) =1/2 7r§2) =1/2
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n 1 2 3 4 5
Qw 0.999646459 0.999977903 0.999993453 0.999996317 0.999997054
l/A‘ 1608.62 12872.71 28964.27 38619.20 38619.20
Table 5
m 1 2 3 4

1/A® 9.46 76.62 1100.01 28964.27

Table 6

For m = 4 the system’s characteristic as the function of number of
repairmen are in Table 5.

For n = 3 the mean failure-free operation time of the system is in Table 6.
We can see that 1/A* sharply increases as m increases as we expected.

5. Conclusion

In this paper the machine interference problem has been treated supposing
that the machines and the repair facility are assumed to operate in independent
random environments governed by ergodic Markov chains. The running and
repair times of machines are supposed to be exponentially distributed random
variables with parameter depending on the number of stopped machines and
the state of corresponding varying environment. Assuming that the repair rate
is much greater than the failure rate (“fast” service), it is shown that the time
until the number of stopped machines reaches a certain level converges weakly,
under appropriate norming, to an exponentially distributed random variable.
Furthermore, some numerical examples illustrate the problem in question in
the field of textile winding.
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