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NONLINEAR ELLIPTIC EQUATIONS WITH
NONLINEAR INTEGRAL CONDITION
ON THE BOUNDARY

I. M. Hassan (Budapest, Hungary)

The aim of this paper is to prove existence of solutions of second order partial
differential equations in a domain 2 C R” with the following nonlocal boundary
conditions:

u(2) = 1 (2,u(®(2))) + / ha (2.1, u(¥(1)) ) do
(0.1) a0

resp.

Oyeu = hi(z,u(z)) + h2 (z,u(@(z))) + / hs (z,t, u(\Il(t)))da,;
(0.2) an

z € 09,

where 0,-u denotes the ”conormal derivative” of u; ®, ¥ are given continuous
mappings from 99 into Q.

Linear elliptic equations with nonlocal boundary condition have been consid-
ered firtsly in [4] and they by several authors (see e.g. [3], [5], [14], [15] and [16]).
Nonlinear elliptic equations with nonlocal boundary condition have been studied in
[11] and [12]. Similar problems with nonlocal boundary condition, without integral
term, have been considered in [7] and [8].

In [6] it is proved the following comparison principle. Let @ be a second order
quasilinear elliptic operator defined by the formula

Q) := ) _ aij(z, u,0u)0;0;u + b(z, u, 0u)

§,j=1

where ¢ = (z1,22,...,2,) € QCR", n > 2 and u € C?(Q). The coefficients
aij(z,2,p), (1,7 =1,...,n), b(z, 2, p) are assumed to be real valued and defined for
all values of (z,z,p) in @ x R x R", further a;; = aj;, Q is bounded.
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Theorem A. Let u,v € C(Q) N C%(Q) satisfy Q(u) > Q(v) in Q, u < v on
0, where
(1) the operator Q is elliptic;
(ii) the coefficients a;;j(z, z,p) are independent of z;
(iii) the coefficient b(z, z,p) is nonincreasing in 2 for each (z,p) €  C R";
(iv) the coefficients a;;, b are continuously differentiable in Q@ x R x R".
Then u <v in Q.
In [6] there are formulated conditions such that the Dirichlet problem

Qu)=0 in Q,

0.3
(03) u=¢ on 0N

has a solution u € C?(Q) N C(Q) for any ¢ € C(5Q) (see Theorem 15.18 of [6]).
1. First boundary value problem

Consider the following problem

(1.1) Q(u) := Z a;j(z,u,0u)0;0ju + b(z,u,0u) =0 in Q,

i,5=1

(1.2) u(z) = hy (z,u(‘b(z))) +/h2(z,t,u(\ll(t)))da', on 99,
on

where &, ¥ : 3Q — Q are continuous mappings, and h; : 02 x R — R, hy :
00 x R? — R are continuous functions such that |8zh,|, |0ahs| exist with the
property (sup [O2h1]| + A(0Q) sup |03h|) < 1, A(OR) is the measure of surface 5Q.

We shall prove existence and uniqueness of the solution of problem (1.1), (1.2)
by using arguments of [8]. The main result of this paragraph is the following

Theorem 1. Assume that the above conditions and conditions (i) - (iv) of
Theorem A are fulfilled with hypothesis of Theorem 15.18 of [6]. Then there ezists
a unique solution of (1.1), (1.2).

Proof. Denote by G(¢) the solution u of the Dirichlet problem (0.3). Further
define operator B by

Be)(z) = b (2,G(0) (@(2)) + [ ha (2,8, G0) (¥(V) ) dov,
an
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then B : C(0Q) — C(09) is a nonlinear mapping, where C(99) is a complete
metric space with the metric p(y1, 92) := sup |p1 — pal.

It is easy to prove that if ¢ € C(0R) is a fixed point of B, i.e. B(p) = ¢, then
u := G(yp) is a solution of (1.1), (1.2) and, conversely, if u is a solution of (1.1),
(1.2), then ¢ := ulsq is a fixed point of B.

Therefore to prove the existence of (1.1), (1.2) it is sufficient to show that B
has a fixed point. This will be a consequence of Banach’s fixed point theorem.

Now we show that B : C(0Q) — C(09) is a contraction on C(0R) for any
#1,p2 € C(09)

(1.3) p(B(p1), B(y2)) = sup|B(p1) — B(p2)| < ¢ p(p1, #2),
where ¢ := (sup |82h1| + A(0R) - sup |33h2|) < 1. We have

[B(p1))(z) — [B(p2))(2) =

= {h,[z,G(sol)(Q(z))] + / hzlz,t,G(sm)(‘I'(t))]dm}

an

_{hl[z,G(pg)(tb(z))] - / h [z,t,G(m)(\Il(t))]da,}.

an

Further, by using Lagrange’s mean value theorem and the notations

a; 1= G(p;)(®(2)), b :=G(p)(¥®), (i=12)
we find that

[B(p1)l(z) = [B(p2))(z) = O2h1(z, a2 + c[a1 — az])(a1 — a2)+

+ / 33h2(:c,t, by + E[bl - bz])(bl - bg)ddg.
an

Consequently,

|B(¢1)(2) = B(p2)(2)] < sup |0:111|G(¢1)(B(2)) — G(p2)(®(2)) |+

+sup |Gshs] - / |G(01) (¥(1)) — Gle2) (¥(t)) | do.
N
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We shall prove that

|G(1)(®(2)) — Gl2)(®(2)) | < plep1, 02);
|G(1) (¥(t)) = G(02)(¥(®)) | < (1, 02).

From these inequalities it follows

(1.4)

p(B(¢1), B(y2)) < ¢ - p(#1,92),

where ¢ := (sup |82h1] + A(OR) - sup |63h2|). This means that B is a contraction
in C(0). By using conditions of theorem A we want to prove that for all y :=
o(z) e

IG(p1)(y) — G(p2)(¥)| < sup lp1 — 2.

Let u; := G(y1), u2 := G(p2), then we have
Q(u1) =Q(u2) =0 in Q, u; =¢;, uz =gz on N
We shall show that this implies

lu1(y) — u2(y)| < sup lp1 —- 2| forall yeQ.

By using notation ¢ := su'p |1 — p2| we may write ;1 — € < 2 < 1 + €.
a0

Consider the functions u := uy, v := u; + €. Since

Qui +¢) = 2": ai;j (2, 0(u1 + €)) (w1 + €)9; (ur +€)+

i,j=1

n

+b(z,ur +6,0(ur +¢)) < Y aij(=, 0uy)(Biur)(Bu1)+
i,7=1
+b(z, u1, 0u1) = Q(u1) =0,

thus

Q) =Q(u1 +¢) <0=Q(uz) =Q(u) in Q.
Further,

v=u+eE=p1+e>p2=uy=u on ON.
It means that all conditions of Theorem A are fulfilled, thus u < v in Q, i.e. for all
yeN

uz(y) < ui(y) +e.
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Similarly can be proved that for all y € Q

u1(y) — € < ua(y)

and so we have
lui(y) — u2(y)| < e

Thus we have shown that

|G(¢1)(®()) — G(2)(®(2))| < sup |1 — 2| = p(¢1, ¥2);
|G(1) (¥(2)) — G(2)(¥(1)) | < sup 1 — p2| = p(p1, 2)-

Hence we obtain (1.3) which completes the proof of Theorem 1.

Since the operator B has exactly one fixed point thus the solution of (1.1),
(1.2) is unique.

Theorem 2. Assume that Q satisfies the conditions of Theorem 15.18 of [6]
and &, ¥ : 9Q — OQ are continuous mappings, hy, hy satisfy the same conditions
as in Theorem 1, then there ezists a unique solution of (1.1), (1.2).

The proof of Theorem 2 is similar to the proof of Theorem 1 except of the
proof of (1.4). Since ® : Q2 — 9Q, ¥ : IQ — 9RQ, thus for £ € IQ we have

G(p1)(2(2) = 91(®(2)),  Glp2)(B(2) = 2(®(2)),

and
G(p1)(¥(®) = 1 (¥(1), Gle2)(¥(t)) = 2(¥(1))
and so (1.4) is trivially valid.

Remark 1. If the condition
(sup |82h1| + A(ORQ) sup |33h2|) <1

is not fulfilled then the nonlocal boundary value problem may have no solution or
it may have several solutions (see [8]).

2. Third boundary value problem
Consider the following problem:

(2.1) > (~1)1*l0% fu(z,u,01u,...,0,u) = F in Q,

lal<1
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B = (2, u(2)) + ha (2, u(8(2)) + / s (=, u(¥(1)) ) doy

(2.2) 89
on 09,
where 8,.u := Y [fa(z,u,01u,...,0,u)]va, Vo denote the coordinates of the
lal=1

normal unit vector on 8Q; ®, ¥ are C'-diffeomorphisms in a neighbourhood of 9
such that S := ®(6Q) C Q, T := ¥(0R) C Q, 69 is bounded and continuously
differentiable (2 may be unbounded).

It will be proved the existence of weak solution of (2.1), (2.2) by using
arguments of [10], [13].

The weak solution of (2.1), (2.2) will be defined as follows. Assume that u is
a classical solution of (2.1), (2.2). Consider any v € C*(Q) with bounded support,
multiply the differential equation (2.1) by v, by using integral transformations, and
by the Gauss-Ostrogradsky theorem we obtain

S [falawtn, . 8o~ [ by e, u(e))ola)dos-

lal<ig a0
(2.3) /71 z,u(z))v(®~!(z))do-—
5
-/ {/713(z,f,u(r))da,} v(z)do, =/Fv =: (F,v).
aq \r Q

Thus the weak solution of (2.1), (2.2) will be defined by (2.3).
3. Existence theorem

Denote by Wp’(Q) the Sobolev space of real valued functions u, whose distri-
butional derivatives of order < 1 belong to LP(Q) (1 < p < o0). The norm in

W, (Q) is defined by
Ip
ey ey = { > [ Ia"ul"}

|0|<ln
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The points £ € R"*! will be written also in the form & = (5,¢) where n € R,
and ( € R™.

Assume that

a) Functions f,, hy, hs and hj satisfy the Carathéodory conditions, i.e. they are
measurable in z for each £ resp. 7 and continuous in § resp. 7 for a.e. z € Q.

b) There exist constants ¢; > 0, p (1 < p < 00), and a function k; € L(Q),
1 1
where — + — = 1 such that
p g

|[fa(z,6)| S c1l€lP~' + ky(z) forall £€R™!, ae z€Q.
¢) For all (n,¢), (1,¢') € R**! with ( # (' and a.e. z € Q

3" [fal2,0,¢) = falz,n,¢)(Ea — ) > 0.

la]=1

d) There exist a constant ¢; > 0 and a function k; € L!(Q2) such that for a.e.
z € Q and all £ € R*+!

Y fa(z,8)a = cal€lP — ks(2).

lal<1

e) If n > p then there exist constants p;, ¢; > 0 and a fixed function l;l €
€ L'*1/71(09Q) such that for all n € R, a.e. z € 9Q

lhi(z, M) < &lnl®* + k1 (),

where

(p—1)

n .
0<p1 < — if n>p

0<py<oo if n=p.

If n < p then for any number s > 0 there is a function hy, € L'(9R) such
that

|h1(2, ’7)] < hl,:(z) if IT}I <s.

f) For any n € R, a.e. z € 95 we have

hi(z,n)n <0.
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g) There exist contants & > 0, py and a fixed function k; € L'*1/#2(S) such
that forany ne R,z € S

lha(z,m)| < &lnl** + ko(z), 0<pa<p—1.

i) There exist c3 > 0, p3 and a fixed function k3 € L!*+!/#2(T') such that for a.e.
z€dalneR, rel

|ha(z,7,n)] < ca|n|®® + ka(r), where 0< ps<p—1.
Theorem 3. Assume that conditions a) — i) are fulfilled. Then for any Fe
€ (WPI(Q))' there ezists u € W} () which satisfies (2.3) for all v € W, () with

compacl support.

To the proof of Theorem 3 we shall prove two lemmas. For arbitrary u,v €
€ W, (Q) define

(Ao(u),v) := /fa(z,u,...,('),,u)a"v,
aQ
(B1(u),v) := /hl (z, u(z))v(z)do,

o0
(B2(u),v) = /ﬁg(z,u(z))v((b'l(z))da,,
5

(Ba(u),v) := / {/713(1:,1', u(‘r))do,} v(z)do,
r

an

and
A::Ao—Bl—Bg—Ba.

Lemma 1. The operator
A WHR) - (W)

is (bounded and) pseudomonotone.

Proof. Firstly we shall prove that A is a bounded operator. Ay, B; and B,
are bounded (see [7]).
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Similarly to operators Bj, Bs, the boundedness of B3 can be proved as follows.
We know that the trace operator

Wi (Q) — Li(69Q)

is compact (and so bounded) if

156<(—n;1)—p for n > p,
n—p

1< §< o for n=p,

and
1<§g<oo for n<p.

From condition i) we obtain

|(Ba(u), v)| = <

aé {F/l.za(:c,‘r, u(r))dcr,} v(z)do,

< / lo(z)lde <
N

< / [/Iiza(z,r, u(r))|da,] |v(z)|dor <
r

an

< { / [ealu(r)I” + ka(7)] d"f} / |[v(z)|dos <
r n

< const - { / (eslu(r)|”* + ka(7)] dvr}llvllw:(n) <

r

/ hs(z, 1, u(r))do,
r

< const - ¢ ||ullfy, ayt [ ka(r)dos ¢|lv]lwi(a),
2 () ’
r

where p3 < p < -(7;—-1—)2, and thus the trace operator WPI(Q) — LP(09) is
-Pp

bounded. The above estimation implies that B3 : W, () — (WPl (Q)), is bounded.
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From conditions b), ¢) and Carathéodory conditions it follows that Ag is
pseudomonotone operator (see [2]). Let (u;) be a sequence such that (u;) converges
weakly in W, () to u and

lim sup(A(u;), u; —u) <0

j—oo -7
Firstly we shall prove that
(2.4) lim (Bg(uj),uj —u) =0, (k=1,2,3).
j—oo
For k = 1,2 (2.4) was proved in [7]. Case k = 3 can be considered in a similar way.

We know (by compact the imbedding theorem) that if (u;) converges weakly to u
in W, () then there exists a subsequence (i;) of (u;) such that #;|sn converges

to u in LI(0N), where § := p3 + 1 < p. By using Holder’s inequality ( with

+

il -
| -

= l), condition i) and the boundedness of the trace operator we have

(Ba(@),3; =l = | [ { [aarr a,.(r))d.,,} (3 - u)do| <
an \r
5/ /ﬁa(z,r,ﬁj(r))daf |&; — uldos <
an \r
AR 14
<t [ / |7la("‘»f>ﬁj(f))d"r|:| {d/ |aj(z)—u(z)|"} <
o Lr [¢]

1/p
(2.5) < const - {]l(calu(r)l"’ + ka("'))lﬁ} g - “||La(an) =

r

p3/(p3+1)
= const - {/(ca|u(r)|p° + ks(r))(p°+l)/padaf} N5 = ull Lacaqy <
r
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p3/(pa+1)
< const - [/ |“|Pa+lda] + ”k3”L1+1/»a(r‘) la; - u”m(an) <
r

< const - {||u||ff,',(m + C} Jla; = “”u(on)'

In the last product the first term is bounded and the second term tends to
0. Consequently, (2.4) is proved for a subsequence, k = 3 and it is not difficult to
show that (2.4) is true also for the original sequence (u;).

Further, we shall prove that

Bi(u)) s Bi(u) in (W(Q), k=123,

(2.6)
(Br(uj),v) — (B(u),v).

For k = 1,2 see [7]. Now we shall prove (2.6) for k = 3, similarly to the case
k =1,2. We have seen that there exists a subsequence (i) of (u;) such that 4;|sq
converges to u in L9(8Q). Thus it may be supposed that (i;) converges a.e. to u
on 09. Consequently, by a)

713(:):, 7, 4j(1)) — 713(-‘8, T, u(r)) a.e.on ON.

Now we shall we use Vitali’s convergence theorem. By Holder’s inequality and
the boundedness of the trace operator, we have

/{/713(.1:,1', ft,-(‘r))da’,} v(z)dos| <
r

E
s e 1/4
< / /fla(z,r, j(r))do,| do, -{/|v(:c)|q.d0',} <
E IT E
oM 14
< / /iza(z,r, ij(r))do,| do -{/|v(z)|‘ida,} <c-¢€
aq T E
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5 2
if the measure of E is sufficiently small, since [ |[ h3(z, 7, @j(7))do,| do < c (see
e It

(2.5)). So it is not difficult to show that all conditions of Vitali’s theorem are
fulfilled and thus we obtain

jlirgo(Bii(ﬁj)!v) = (B3(u))v>

for all v € Wpl (). It is easy to prove that the above equality is true also for the
original sequence (u;) and so we have (2.6).

We have shown that if (u;) converges weakly to u in W, (Q) and

lim (A(uj),u; —u) <0
J—00

then
(2.7) Jlim (Be(wj),u; —w) =0, k=1,2,3
and

(2.8) Bi(uj) % Bu(v) in  (WL(Q))'.

From (2.7) it follows that

lim sup(A,(u;),u; —u) <0
j—oo

Since Ao is pseudomonotone thus (Ao(u;)) LA Ag(u) in (W} (Q))', and

lim; — oo (Ao (u;), u; —u) = 0. Consequently, by (2.8) (A(yu;)) v, A(u) in (Wpl(Q))'
and by (2.7) we have

lim (A(u;),u; —u) =0.

j—oo
So A is pseudomonotone operator which completes the proof of Lemma 1.

Lemma 2. The operator
A: WPI(Q) — (WPI(Q))I is coercive, i.e.

fim A _

(o o
Null—oo  ||ul|
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Proof. From condition d) it follows that
(2.9) (Ao(u), u) > sz”““’;‘v;(n) - c3,

where c}, cj are positive constants. By assumption f) we have

(2.10) (Bi(u),u) > —/hl(z,u)uda > 0.
a0

From assumption g) and Holder’s inequality we obtain
(2.11) [(B2(u), u) > 53”““553'(1:;) + callullwy(a),

where ps + 1 < p.
From condition i) we obtain

/{/713(::,1—, “(T))dar} u(z)do,
r

an

[(Ba(u), u)| =

<

/ lhs (2,7, u(‘r))da,'] |u(z)|dos] <
r

an L

< / L r/ (calu(n)|” +ka(f))d0r} lu(2)|do =

an

= {/(Calu(f)l"’3 + ka(T))dO'r} -/Iu(z)|da, <
r an

<es {nuufs,x(n) +f ka(r)dof} lullw oy <
r
+1
< 05““”’::"1((1) + Ce”“”W'l(ﬂ);

where p3 + 1 < p.
Consequently, by using (2.9), (2.11) we find

(A(u),u) _ (Ao(u),u) _(Bi(u),u) (Ba(u),u) (Bs(u)u)
Il [lull Il [l lull =
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- +1 +1
2 chllulliys ) — ¢3 — Ellullwia) — callullwia) — esllullia) — cellullwy@)-

From this inequality, by using p2 + 1 < p, p3 + 1 < p it follows that

(A,
hllmeo Rl

The proof of Theorem 3. By the Lemmas 1 and 2 the operator A :
W,,l Q) — (W,}(Q))' is pseudomonotone and coercive. By using the well-known
theory of pseudomonotone operators in reflexive Banach spaces (see e.g. [9]) we
obtain that for any F € (W,}(Q))' there exists u € W) (Q) which satisfies (2.3)

for all v € W’} (?) with compact support and so the proof of existence theorem is
complete.

Remark 2. It is possible to consider more general second order partial
differential equations

3 ()16 fo(z,u,01u, ..., 8,u) + 9(z,u) = F in Q

lal<1

with nonlocal boundary condition (2.2), where in the terms g(z, u) and hy(z, u) no
growth restriction is imposed with respect to u but it is supposed that g, h; satisfy
the sign conditions g(z,n)n > 0, hi(z,n)n < 0 (see [7] and [8]).

References

[1] Adams R.A., Sobolev spaces, Acagdemic Press, Now York-London, 1975.

[2] Browder F.E., Pseudomonotone operators and nonlinear elliptic boundary
value problems on unbounded domains, Proc.Nat.Acad.Sci.USA, T4 (1977),
2659-2661.

[3] Browder F.E., Nonlocal elliptic boundary value problems, Amer.J. Math., 86
(1964), 735-750.

[4] Carleman T., Sur la théorie des équations intégrales et ses applications,
Verhandlungen des Internazionalen Mathematikerkongress, Ziirich, 1932, Bd.
1, 138-151.

[5] Chabrowski J., On nonlocal problems for elliptic linear equations, Funkcialaj
FEkvacioj, 32 (1989), 215-226.

(6] Gilbarg D., Trudinger N.S., Elliptic partial differential equations of second
order, Springer, Berlin-Heidelberg-New York-Tokyo, 1983.



Nonlinear elliptic equations with nonlinear integral condition 107

[7] Hassan I.M., Nonlocal and strongly nonlinear third boundary value problem,
Studia Sci.Math. Hung., to appear.

(8] Hassan I.M., Nonlocal and nonlinear first boundary value problems for
quasilinear partial differential equations, Annales Univ.Sci. Budapest, Sectio
Math., to appear.

[9] Lions J.L., Quelqgues méthodes de résolution des problémes auz limites non-
linéaires, Dunod, Paris, 1969.

[10] Simon L., On strongly nonlinear elliptic equations in unbounded domains,
Ann.Univ.Sci. Budapest, Sectio Math., 28 (1986), 241-252.

[11] Simon L., Nonlinear elliptic differential equations with nonlocal boundary
conditions, Acta Math. Hung., to appear.

[12) Simon L., Strongly nonlinear elliptic variational inqualities with nonlocal
boundary conditions, Colloguia Math.Soc.J. Bolyai 48, Qualitative Theory of
Differential Equations, Szeged 1988, 605-620.

[13] Webb J.R.L., Boundary value problems for strongly nonlinear elliptic equa-
tions, J.London Math.Soc., (2), 21 (1980), 123-132.

[14] Bunamze A.B., Camapcxmuit A.A., O HekoTophXx mpocTedmux 0606-
LIEHMAX JMHENHBIX BJUIMNTUYECKMX KpaeBhix 3amau, JAH CCCP, 185
(1969), 739-740.

[15] Bunanmze A.B., K Teopun HenokaabHbIX Kpaesuix 3ana4, JAH CCCP, 227
(1984), 17-19.

[16]) Cxy6auenckuit A.JI., DANUNTHUECKHE 3a[aUM C HEJOKAJBHEIMH YCJO-
BusAMM B6aM3M rpaHuunl, Mamesm.c6., 129 (1986), 279-302.

(Received May 23, 1991)

I.M. Hassan

Department of Applied Analysis
Eo6tvos Lorand University
Budapest, Hungary



