NONLINEAR ELLIPTIC EQUATIONS WITH NONLINEAR INTEGRAL CONDITION ON THE BOUNDARY

I. M. Hassan (Budapest, Hungary)

The aim of this paper is to prove existence of solutions of second order partial differential equations in a domain $\Omega \subset \mathbb{R}^n$ with the following nonlocal boundary conditions:

$$u(x)=h_1\Big(x,u\big(\Phi(x)\big)\Big)+\int\limits_{\partial\Omega}h_2\Big(x,t,u\big(\Psi(t)\big)\Big)d\sigma_t$$
 (0.1)

(0.2)
$$\partial_{\nu} \cdot u := h_1(x, u(x)) + h_2(x, u(\Phi(x))) + \int_{\partial \Omega} h_3(x, t, u(\Psi(t))) d\sigma_t;$$

$$x \in \partial \Omega.$$

where $\partial_{\nu} \cdot u$ denotes the "conormal derivative" of u; Φ , Ψ are given continuous mappings from $\partial\Omega$ into $\overline{\Omega}$.

Linear elliptic equations with nonlocal boundary condition have been considered firtsly in [4] and they by several authors (see e.g. [3], [5], [14], [15] and [16]). Nonlinear elliptic equations with nonlocal boundary condition have been studied in [11] and [12]. Similar problems with nonlocal boundary condition, without integral term, have been considered in [7] and [8].

In [6] it is proved the following comparison principle. Let Q be a second order quasilinear elliptic operator defined by the formula

$$Q(u) := \sum_{i,j=1}^{n} a_{ij}(x,u,\partial u) \partial_i \partial_j u + b(x,u,\partial u)$$

where $x = (x_1, x_2, ..., x_n) \in \Omega \subset \mathbb{R}^n$, $n \geq 2$ and $u \in C^2(\Omega)$. The coefficients $a_{ij}(x, z, p)$, (i, j = 1, ..., n), b(x, z, p) are assumed to be real valued and defined for all values of (x, z, p) in $\Omega \times \mathbb{R} \times \mathbb{R}^n$, further $a_{ij} = a_{ji}$, Ω is bounded.

I.M.Hassan

Theorem A. Let $u, v \in C(\overline{\Omega}) \cap C^2(\Omega)$ satisfy $Q(u) \geq Q(v)$ in Ω , $u \leq v$ on $\partial\Omega$, where

- (i) the operator Q is elliptic;
- (ii) the coefficients $a_{ij}(x, z, p)$ are independent of z;
- (iii) the coefficient b(x, z, p) is nonincreasing in z for each $(x, p) \in \Omega \subset \mathbb{R}^n$;
- (iv) the coefficients a_{ij} , b are continuously differentiable in $\Omega \times \mathbb{R} \times \mathbb{R}^n$. Then $u \leq v$ in Ω .

In [6] there are formulated conditions such that the Dirichlet problem

(0.3)
$$Q(u) = 0 \text{ in } \Omega,$$

$$u = \varphi \text{ on } \partial\Omega$$

has a solution $u \in C^2(\Omega) \cap C(\overline{\Omega})$ for any $\varphi \in C(\partial \Omega)$ (see Theorem 15.18 of [6]).

1. First boundary value problem

Consider the following problem

(1.1)
$$Q(u) := \sum_{i,j=1}^{n} a_{ij}(x, u, \partial u) \partial_i \partial_j u + b(x, u, \partial u) = 0 \text{ in } \Omega,$$

(1.2)
$$u(x) = h_1(x, u(\Phi(x))) + \int_{\partial\Omega} h_2(x, t, u(\Psi(t))) d\sigma_t \text{ on } \partial\Omega,$$

where $\Phi, \Psi : \partial\Omega \to \overline{\Omega}$ are continuous mappings, and $h_1 : \partial\Omega \times \mathbb{R} \to \mathbb{R}$, $h_2 : \partial\Omega \times \mathbb{R}^2 \to \mathbb{R}$ are continuous functions such that $|\partial_2 h_1|$, $|\partial_3 h_2|$ exist with the property $(\sup |\partial_2 h_1| + \lambda(\partial\Omega) \sup |\partial_3 h_2|) < 1$, $\lambda(\partial\Omega)$ is the measure of surface $\partial\Omega$.

We shall prove existence and uniqueness of the solution of problem (1.1), (1.2) by using arguments of [8]. The main result of this paragraph is the following

Theorem 1. Assume that the above conditions and conditions (i) – (iv) of Theorem A are fulfilled with hypothesis of Theorem 15.18 of [6]. Then there exists a unique solution of (1.1), (1.2).

Proof. Denote by $G(\varphi)$ the solution u of the Dirichlet problem (0.3). Further define operator B by

$$B(arphi)(x) := h_1\Big(x,G(arphi)ig(\Phi(x)ig)\Big) + \int\limits_{\partial\Omega} h_2\Big(x,t,G(arphi)ig(\Psi(t)ig)\Big)d\sigma_t,$$

then $B: C(\partial\Omega) \to C(\partial\Omega)$ is a nonlinear mapping, where $C(\partial\Omega)$ is a complete metric space with the metric $\rho(\varphi_1, \varphi_2) := \sup |\varphi_1 - \varphi_2|$.

It is easy to prove that if $\varphi \in C(\partial\Omega)$ is a fixed point of B, i.e. $B(\varphi) = \varphi$, then $u := G(\varphi)$ is a solution of (1.1), (1.2) and, conversely, if u is a solution of (1.1), (1.2), then $\varphi := u|_{\partial\Omega}$ is a fixed point of B.

Therefore to prove the existence of (1.1), (1.2) it is sufficient to show that B has a fixed point. This will be a consequence of Banach's fixed point theorem.

Now we show that $B:C(\partial\Omega)\to C(\partial\Omega)$ is a contraction on $C(\partial\Omega)$ for any $\varphi_1,\varphi_2\in C(\partial\Omega)$

$$(1.3) \rho(B(\varphi_1), B(\varphi_2)) = \sup |B(\varphi_1) - B(\varphi_2)| \le q \cdot \rho(\varphi_1, \varphi_2),$$

where $q := (\sup |\partial_2 h_1| + \lambda(\partial \Omega) \cdot \sup |\partial_3 h_2|) < 1$. We have

$$egin{aligned} &[B(arphi_1)](x)-[B(arphi_2)](x)=\ &=\left\{h_1ig[x,G(arphi_1)ig(\Phi(x))ig]+\int\limits_{\partial\Omega}h_2ig[x,t,G(arphi_1)ig(\Psi(t))ig]d\sigma_t
ight\}-\ &-\left\{h_1ig[x,G(arphi_2)ig(\Phi(x))ig]-\int\limits_{\partial\Omega}h_2ig[x,t,G(arphi_2)ig(\Psi(t))ig]d\sigma_t
ight\}. \end{aligned}$$

Further, by using Lagrange's mean value theorem and the notations

$$a_j := G(\varphi_j)(\Phi(x)), \quad b_j := G(\varphi_j)(\Psi(t)), \quad (j = 1, 2)$$

we find that

$$[B(\varphi_1)](x) - [B(\varphi_2)](x) = \partial_2 h_1(x, a_2 + c[a_1 - a_2])(a_1 - a_2) +$$

$$+ \int_{\partial\Omega} \partial_3 h_2(x, t, b_2 + \tilde{c}[b_1 - b_2])(b_1 - b_2) d\sigma_t.$$

Consequently,

$$|B(\varphi_1)(x) - B(\varphi_2)(x)| \le \sup |\partial_2 h_1| |G(\varphi_1)(\Phi(x)) - G(\varphi_2)(\Phi(x))| +$$

$$+ \sup |\partial_3 h_2| \cdot \int_{\partial\Omega} |G(\varphi_1)(\Psi(t)) - G(\varphi_2)(\Psi(t))| d\sigma_t.$$

We shall prove that

(1.4)
$$|G(\varphi_1)(\Phi(x)) - G(\varphi_2)(\Phi(x))| \le \rho(\varphi_1, \varphi_2);$$

$$|G(\varphi_1)(\Psi(t)) - G(\varphi_2)(\Psi(t))| \le \rho(\varphi_1, \varphi_2).$$

From these inequalities it follows

$$\rho(B(\varphi_1), B(\varphi_2)) \leq q \cdot \rho(\varphi_1, \varphi_2),$$

where $q := (\sup |\partial_2 h_1| + \lambda(\partial \Omega) \cdot \sup |\partial_3 h_2|)$. This means that B is a contraction in $C(\partial \Omega)$. By using conditions of theorem A we want to prove that for all $y := \Phi(x) \in \overline{\Omega}$

$$|G(\varphi_1)(y) - G(\varphi_2)(y)| \le \sup_{\partial\Omega} |\varphi_1 - \varphi_2|.$$

Let $u_1 := G(\varphi_1)$, $u_2 := G(\varphi_2)$, then we have

$$Q(u_1) = Q(u_2) = 0$$
 in Ω , $u_1 = \varphi_1$, $u_2 = \varphi_2$ on $\partial \Omega$.

We shall show that this implies

$$|u_1(y) - u_2(y)| \le \sup_{\partial\Omega} |\varphi_1 - \varphi_2| \quad \text{for all} \quad y \in \Omega.$$

By using notation $\varepsilon := \sup_{\partial \Omega} |\varphi_1 - \varphi_2|$ we may write $\varphi_1 - \varepsilon \leq \varphi_2 \leq \varphi_1 + \varepsilon$. Consider the functions $u := u_2$, $v := u_1 + \varepsilon$. Since

$$Q(u_1 + \varepsilon) = \sum_{i,j=1}^{n} a_{ij} (x, \partial(u_1 + \varepsilon)) \partial_i (u_1 + \varepsilon) \partial_j (u_1 + \varepsilon) +$$

$$+b(x, u_1 + \varepsilon, \partial(u_1 + \varepsilon)) \le \sum_{i,j=1}^n a_{ij}(x, \partial u_1)(\partial_i u_1)(\partial_j u_1) +$$

$$+b(x, u_1, \partial u_1) = Q(u_1) = 0,$$

thus

$$Q(v) = Q(u_1 + \varepsilon) \le 0 = Q(u_2) = Q(u)$$
 in Ω .

Further,

$$v = u_1 + \varepsilon = \varphi_1 + \varepsilon \ge \varphi_2 = u_2 = u$$
 on $\partial \Omega$.

It means that all conditions of Theorem A are fulfilled, thus $u \leq v$ in Ω , i.e. for all $y \in \Omega$

$$u_2(y) \leq u_1(y) + \varepsilon$$
.

Similarly can be proved that for all $y \in \Omega$

$$u_1(y) - \varepsilon \leq u_2(y)$$

and so we have

$$|u_1(y)-u_2(y)|\leq \varepsilon.$$

Thus we have shown that

$$\begin{aligned} \left| G(\varphi_1) \big(\Phi(x) \big) - G(\varphi_2) \big(\Phi(x) \big) \right| &\leq \sup |\varphi_1 - \varphi_2| = \rho(\varphi_1, \varphi_2); \\ \left| G(\varphi_1) \big(\Psi(t) \big) - G(\varphi_2) \big(\Psi(t) \big) \right| &\leq \sup |\varphi_1 - \varphi_2| = \rho(\varphi_1, \varphi_2). \end{aligned}$$

Hence we obtain (1.3) which completes the proof of Theorem 1.

Since the operator B has exactly one fixed point thus the solution of (1.1), (1.2) is unique.

Theorem 2. Assume that Q satisfies the conditions of Theorem 15.18 of [6] and $\Phi, \Psi : \partial\Omega \to \partial\Omega$ are continuous mappings, h_1, h_2 satisfy the same conditions as in Theorem 1, then there exists a unique solution of (1.1), (1.2).

The proof of Theorem 2 is similar to the proof of Theorem 1 except of the proof of (1.4). Since $\Phi: \partial\Omega \to \partial\Omega$, $\Psi: \partial\Omega \to \partial\Omega$, thus for $x \in \partial\Omega$ we have

$$G(\varphi_1)(\Phi(x)) = \varphi_1(\Phi(x)), \quad G(\varphi_2)(\Phi(x)) = \varphi_2(\Phi(x)),$$

 \mathbf{and}

$$G(\varphi_1)\big(\Psi(t)\big)=\varphi_1\big(\Psi(t)\big),\quad G(\varphi_2)\big(\Psi(t)\big)=\varphi_2\big(\Psi(t)\big)$$

and so (1.4) is trivially valid.

Remark 1. If the condition

$$(\sup |\partial_2 h_1| + \lambda(\partial \Omega) \sup |\partial_3 h_2|) < 1$$

is not fulfilled then the nonlocal boundary value problem may have no solution or it may have several solutions (see [8]).

2. Third boundary value problem

Consider the following problem:

(2.1)
$$\sum_{|\alpha| \le 1} (-1)^{|\alpha|} \partial^{\alpha} f_{\alpha}(x, u, \partial_{1} u, \dots, \partial_{n} u) = F \text{ in } \Omega,$$

(2.2)
$$\partial_{\nu} \cdot u = h_1(x, u(x)) + h_2(x, u(\Phi(x))) + \int_{\partial \Omega} h_3(x, t, u(\Psi(t))) d\sigma_t$$
 on $\partial \Omega$,

where $\partial_{\nu} \cdot u := \sum_{|\alpha|=1} [f_{\alpha}(x, u, \partial_1 u, \dots, \partial_n u)] \nu_{\alpha}$, ν_{α} denote the coordinates of the

normal unit vector on $\partial\Omega$; Φ , Ψ are C^1 -diffeomorphisms in a neighbourhood of $\partial\Omega$ such that $S:=\Phi(\partial\Omega)\subset\overline{\Omega},\ \Gamma:=\Psi(\partial\Omega)\subset\overline{\Omega},\ \partial\Omega$ is bounded and continuously differentiable (Ω may be unbounded).

It will be proved the existence of weak solution of (2.1), (2.2) by using arguments of [10], [13].

The weak solution of (2.1), (2.2) will be defined as follows. Assume that u is a classical solution of (2.1), (2.2). Consider any $v \in C^1(\overline{\Omega})$ with bounded support, multiply the differential equation (2.1) by v, by using integral transformations, and by the Gauss-Ostrogradsky theorem we obtain

$$\sum_{|\alpha| \leq 1} \int_{\Omega} [f_{\alpha}(x, u, \partial_{1}u, \dots, \partial_{n}u)] \partial^{\alpha}v - \int_{\partial\Omega} h_{1}(x, u(x))v(x)d\sigma_{x} -$$

(2.3)
$$-\int_{S} \tilde{h}_{2}(x, u(x)) v(\Phi^{-1}(x)) d\sigma_{x} - \int_{S} \left\{ \int_{\Gamma} \tilde{h}_{3}(x, \tau, u(\tau)) d\sigma_{\tau} \right\} v(x) d\sigma_{x} = \int_{\Omega} Fv =: \langle \tilde{F}, v \rangle.$$

Thus the weak solution of (2.1), (2.2) will be defined by (2.3).

3. Existence theorem

Denote by $W_p^1(\Omega)$ the Sobolev space of real valued functions u, whose distributional derivatives of order ≤ 1 belong to $L^P(\Omega)$ $(1 . The norm in <math>W_p^1(\Omega)$ is defined by

$$||u||_{W^1_p(\Omega)} := \left\{ \sum_{|\alpha| \le 1} \int_{\Omega} \left| \partial^{\alpha} u \right|^p \right\}^{1/p}$$

The points $\xi \in \mathbb{R}^{n+1}$ will be written also in the form $\xi = (\eta, \zeta)$ where $\eta \in \mathbb{R}$, and $\zeta \in \mathbb{R}^n$.

Assume that

- a) Functions f_{α} , h_1 , \tilde{h}_2 and \tilde{h}_3 satisfy the Carathéodory conditions, i.e. they are measurable in x for each ξ resp. η and continuous in ξ resp. η for a.e. $x \in \Omega$.
- b) There exist constants $c_1 > 0$, p $(1 , and a function <math>k_1 \in L^q(\Omega)$, where $\frac{1}{p} + \frac{1}{q} = 1$ such that

$$\left|f_{\alpha}(x,\xi)\right| \leq c_1 |\xi|^{p-1} + k_1(x)$$
 for all $\xi \in \mathbb{R}^{n+1}$, a.e. $x \in \Omega$.

c) For all (η, ζ) , $(\eta, \zeta') \in \mathbb{R}^{n+1}$ with $\zeta \neq \zeta'$ and a.e. $x \in \Omega$

$$\sum_{|\alpha|=1} [f_{\alpha}(x,\eta,\zeta) - f_{\alpha}(x,\eta,\zeta'](\xi_{\alpha} - \xi'_{\alpha}) > 0.$$

d) There exist a constant $c_2 > 0$ and a function $k_2 \in L^1(\Omega)$ such that for a.e. $x \in \Omega$ and all $\xi \in \mathbb{R}^{n+1}$

$$\sum_{|\alpha|\leq 1} f_{\alpha}(x,\xi)\xi_{\alpha} \geq c_2|\xi|^p - k_2(x).$$

e) If $n \geq p$ then there exist constants ρ_1 , $\tilde{c}_1 > 0$ and a fixed function $\tilde{k}_1 \in L^{1+1/\rho_1}(\partial\Omega)$ such that for all $\eta \in \mathbb{R}$, a.e. $x \in \partial\Omega$

$$|h_1(x,\eta)| \leq \tilde{c}_1 |\eta|^{\rho_1} + \tilde{k}_1(x),$$

where

$$0 < \rho_1 < \frac{n(p-1)}{n-p} \quad \text{if} \quad n > p$$
$$0 < \rho_1 < \infty \quad \text{if} \quad n = p.$$

If n < p then for any number s > 0 there is a function $h_{1,s} \in L^1(\partial\Omega)$ such that

$$|h_1(x,\eta)| \leq h_{1,s}(x)$$
 if $|\eta| \leq s$.

f) For any $\eta \in \mathbb{R}$, a.e. $x \in \partial \Omega$ we have

$$h_1(x,\eta)\eta < 0.$$

g) There exist contants $\tilde{c}_2 > 0$, ρ_2 and a fixed function $\tilde{k}_2 \in L^{1+1/\rho_2}(S)$ such that for any $\eta \in \mathbb{R}$, $x \in S$

$$|\tilde{h}_2(x,\eta)| \le \tilde{c}_2 |\eta|^{\rho_2} + \tilde{k}_2(x), \quad 0 < \rho_2 < p-1.$$

i) There exist $c_3 > 0$, ρ_3 and a fixed function $k_3 \in L^{1+1/\rho_3}(\Gamma)$ such that for a.e. $x \in \partial \Omega$, all $\eta \in \mathbb{R}$, $\tau \in \Gamma$

$$|\tilde{h}_3(x, \tau, \eta)| \le c_3 |\eta|^{\rho_3} + k_3(\tau), \quad \text{where} \quad 0 < \rho_3 < p - 1.$$

Theorem 3. Assume that conditions a) - i) are fulfilled. Then for any $\tilde{F} \in (W_p^1(\Omega))'$ there exists $u \in W_p^1(\Omega)$ which satisfies (2.3) for all $v \in W_p^1(\Omega)$ with compact support.

To the proof of Theorem 3 we shall prove two lemmas. For arbitrary $u, v \in W_p^1(\Omega)$ define

$$egin{aligned} \langle A_0(u),v
angle &:= \int\limits_{\Omega} f_{lpha}(x,u,\ldots,\partial_n u)\partial^{lpha}v,\ \langle B_1(u),v
angle &:= \int\limits_{\partial\Omega} h_1ig(x,u(x)ig)v(x)d\sigma_x,\ \langle B_2(u),v
angle &:= \int\limits_{S} ilde{h}_2ig(x,u(x)ig)vig(\Phi^{-1}(x)ig)d\sigma_x,\ \langle B_3(u),v
angle &:= \int\limits_{\partial\Omega} \left\{\int\limits_{\Gamma} ilde{h}_3ig(x,\tau,u(\tau)ig)d\sigma_\tau
ight\} v(x)d\sigma_x \end{aligned}$$

and

$$A := A_0 - B_1 - B_2 - B_3.$$

Lemma 1. The operator

$$A: W_p^1(\Omega) \to \left(W_p^1(\Omega)\right)'$$

is (bounded and) pseudomonotone.

Proof. Firstly we shall prove that A is a bounded operator. A_0, B_1 and B_2 are bounded (see [7]).

Similarly to operators B_1 , B_2 , the boundedness of B_3 can be proved as follows. We know that the trace operator

$$W_n^1(\Omega) \to L^{\tilde{q}}(\partial\Omega)$$

is compact (and so bounded) if

$$1 \le \tilde{q} < \frac{(n-1)p}{n-p}$$
 for $n > p$,
 $1 \le \tilde{q} < \infty$ for $n = p$,

and

$$1 \le \tilde{q} \le \infty$$
 for $n < p$.

From condition i) we obtain

$$\begin{split} |\langle B_3(u), v \rangle| &= \left| \int\limits_{\partial \Omega} \left\{ \int\limits_{\Gamma} \tilde{h}_3 \big(x, \tau, u(\tau) \big) d\sigma_\tau \right\} v(x) d\sigma_x \right| \leq \\ &\leq \int\limits_{\partial \Omega} \left| \int\limits_{\Gamma} \tilde{h}_3 \big(x, \tau, u(\tau) \big) d\sigma_\tau \right| |v(x)| d\sigma_x \leq \\ &\leq \int\limits_{\partial \Omega} \left[\int\limits_{\Gamma} \left| \tilde{h}_3 \big(x, \tau, u(\tau) \big) \right| d\sigma_\tau \right] |v(x)| d\sigma_x \leq \\ &\leq \left\{ \int\limits_{\Gamma} \left[c_3 |u(\tau)|^{\rho_3} + k_3(\tau) \right] d\sigma_\tau \right\} \int\limits_{\partial \Omega} |v(x)| d\sigma_x \leq \\ &\leq \operatorname{const} \cdot \left\{ \int\limits_{\Gamma} \left[c_3 |u(\tau)|^{\rho_3} + k_3(\tau) \right] d\sigma_\tau \right\} ||v||_{W^1_{\mathfrak{p}}(\Omega)} \leq \\ &\leq \operatorname{const} \cdot \left\{ ||u||^{\rho_3}_{W^1_{\mathfrak{p}}(\Omega)} + \int\limits_{\Gamma} k_3(\tau) d\sigma_\tau \right\} ||v||_{W^1_{\mathfrak{p}}(\Omega)}, \end{split}$$

where $\rho_3 , and thus the trace operator <math>W^1_p(\Omega) \to L^{\rho_3}(\partial\Omega)$ is bounded. The above estimation implies that $B_3: W^1_p(\Omega) \to \left(W^1_p(\Omega)\right)'$ is bounded.

From conditions b), c) and Carathéodory conditions it follows that A_0 is pseudomonotone operator (see [2]). Let (u_j) be a sequence such that (u_j) converges weakly in $W_p^1(\Omega)$ to u and

$$\lim_{j\to\infty}\sup\langle A(u_j),u_j-u\rangle\leq 0.$$

Firstly we shall prove that

(2.4)
$$\lim_{j\to\infty}\langle B_k(u_j), u_j-u\rangle=0, \quad (k=1,2,3).$$

For k=1,2 (2.4) was proved in [7]. Case k=3 can be considered in a similar way. We know (by compact the imbedding theorem) that if (u_j) converges weakly to u in $W_p^1(\Omega)$ then there exists a subsequence (\tilde{u}_j) of (u_j) such that $\tilde{u}_j|_{\partial\Omega}$ converges to u in $L^{\tilde{q}}(\partial\Omega)$, where $\tilde{q}:=\rho_3+1< p$. By using Hölder's inequality (with

 $\frac{1}{\tilde{p}} + \frac{1}{\tilde{q}} = 1$, condition i) and the boundedness of the trace operator we have

$$\begin{aligned} |\langle B_3(\tilde{u}_j), \tilde{u}_j - u \rangle| &= \left| \int\limits_{\partial \Omega} \left\{ \int\limits_{\Gamma} \tilde{h}_3\big(x, \tau, \tilde{u}_j(\tau)\big) d\sigma_{\tau} \right\} (\tilde{u}_j - u) d\sigma_{x} \right| \leq \\ &\leq \int \left| \int\limits_{\partial \Omega} \tilde{h}_3\big(x, \tau, \tilde{u}_j(\tau)\big) d\sigma_{\tau} \right| |\tilde{u}_j - u| d\sigma_{x} \leq \end{aligned}$$

$$\leq \left\{\int\limits_{\mathbb{T}_{0}}\left[\int\limits_{\mathbb{T}_{0}}\left|\tilde{h}_{3}\big(x,\tau,\tilde{u}_{j}(\tau)\big)d\sigma_{\tau}\right|\right]^{\tilde{p}}\right\}^{1/\tilde{p}}\left\{\int\limits_{\mathbb{T}_{0}}\left|\tilde{u}_{j}(x)-u(x)\right|^{\tilde{q}}\right\}^{1/\tilde{q}}\leq$$

$$(2.5) \leq \operatorname{const} \cdot \left\{ \int_{\Gamma} \left| \left(c_3 |u(\tau)|^{\rho_3} + k_3(\tau) \right) \right|^{\tilde{p}} \right\}^{1/\tilde{p}} \cdot \left\| \tilde{u}_j - u \right\|_{L^{\tilde{q}}(\partial\Omega)} =$$

$$= \operatorname{const} \cdot \left\{ \int\limits_{\Gamma} \left(c_3 |u(\tau)|^{\rho_3} + k_3(\tau) \right)^{(\rho_3+1)/\rho_3} d\sigma_{\tau} \right\}^{\rho_3/(\rho_3+1)} \cdot \|\tilde{u}_j - u\|_{L^{\tilde{q}}(\partial\Omega)} \leq$$

$$\leq \operatorname{const} \cdot \left\{ \left[\int_{\Gamma} |u|^{\rho_3+1} d\sigma \right]^{\rho_3/(\rho_3+1)} + \|k_3\|_{L^{1+1/\rho_3}(\Gamma)} \right\} \cdot \|\tilde{u}_j - u\|_{L^{\tilde{q}}(\partial\Omega)} \leq$$

$$\leq \operatorname{const} \cdot \left\{ \|u\|_{W_{-1}^1(\Omega)}^{\rho_3} + c \right\} \cdot \|\tilde{u}_j - u\|_{L^{\tilde{q}}(\partial\Omega)}.$$

In the last product the first term is bounded and the second term tends to 0. Consequently, (2.4) is proved for a subsequence, k = 3 and it is not difficult to show that (2.4) is true also for the original sequence (u_i) .

Further, we shall prove that

(2.6)
$$B_{k}(u_{j}) \xrightarrow{w'} B_{k}(u) \quad \text{in} \quad (W_{p}^{1}(\Omega))', \quad k = 1, 2, 3, \\ \langle B_{k}(u_{j}), v \rangle \rightarrow \langle B_{k}(u), v \rangle.$$

For k=1,2 see [7]. Now we shall prove (2.6) for k=3, similarly to the case k=1,2. We have seen that there exists a subsequence (\tilde{u}_j) of (u_j) such that $\tilde{u}_j|_{\partial\Omega}$ converges to u in $L^{\tilde{q}}(\partial\Omega)$. Thus it may be supposed that (\tilde{u}_j) converges a.e. to u on $\partial\Omega$. Consequently, by a)

$$\tilde{h}_3(x,\tau,\tilde{u}_i(\tau)) \to \tilde{h}_3(x,\tau,u(\tau))$$
 a.e. on $\partial\Omega$.

Now we shall we use Vitali's convergence theorem. By Hölder's inequality and the boundedness of the trace operator, we have

$$\left| \int\limits_{E} \left\{ \int\limits_{\Gamma} \tilde{h}_{3}(x,\tau,\tilde{u}_{j}(\tau)) d\sigma_{\tau} \right\} v(x) d\sigma_{x} \right| \leq$$

$$\leq \left\{ \int\limits_{E} \left| \int\limits_{\Gamma} \tilde{h}_{3}(x,\tau,\tilde{u}_{j}(\tau)) d\sigma_{\tau} \right|^{\tilde{p}} d\sigma_{x} \right\}^{1/\tilde{p}} \cdot \left\{ \int\limits_{E} |v(x)|^{\tilde{q}} d\sigma_{x} \right\}^{1/\tilde{q}} \leq$$

$$\leq \left\{ \int\limits_{\partial\Omega} \left| \int\limits_{\Gamma} \tilde{h}_{3}(x,\tau,\tilde{u}_{j}(\tau)) d\sigma_{\tau} \right|^{\tilde{p}} d\sigma \right\}^{1/\tilde{p}} \cdot \left\{ \int\limits_{E} |v(x)|^{\tilde{q}} d\sigma_{x} \right\}^{1/\tilde{q}} < c \cdot \varepsilon$$

if the measure of E is sufficiently small, since $\int_{\partial\Omega}\left|\int_{\Gamma}\tilde{h}_{3}(x,\tau,\tilde{u}_{j}(\tau))d\sigma_{\tau}\right|^{\tilde{p}}d\sigma < c$ (see (2.5)). So it is not difficult to show that all conditions of Vitali's theorem are fulfilled and thus we obtain

$$\lim_{i\to\infty}\langle B_3(\tilde{u}_j),v\rangle=\langle B_3(u),v\rangle$$

for all $v \in W_p^1(\Omega)$. It is easy to prove that the above equality is true also for the original sequence (u_i) and so we have (2.6).

We have shown that if (u_j) converges weakly to u in $W^1_p(\Omega)$ and

$$\lim_{j\to\infty}\langle A(u_j),u_j-u\rangle\leq 0$$

then

(2.7)
$$\lim_{j\to\infty}\langle B_k(u_j), u_j-u\rangle=0, \quad k=1,2,3$$

and

(2.8)
$$B_k(u_j) \stackrel{w'}{\to} B_k(u) \text{ in } (W_p^1(\Omega))'.$$

From (2.7) it follows that

$$\lim_{j\to\infty}\sup\langle A_o(u_j),u_j-u\rangle\leq 0.$$

Since A_0 is pseudomonotone thus $(A_0(u_j)) \stackrel{w'}{\to} A_0(u)$ in $(W_p^1(\Omega))'$, and $\lim_{j\to\infty} \langle A_0(u_j), u_j - u \rangle = 0$. Consequently, by (2.8) $(A(u_j)) \stackrel{w'}{\to} A(u)$ in $(W_p^1(\Omega))'$ and by (2.7) we have

$$\lim_{j\to\infty}\langle A(u_j),u_j-u\rangle=0.$$

So A is pseudomonotone operator which completes the proof of Lemma 1.

Lemma 2. The operator

$$A: W_p^1(\Omega) \to \left(W_p^1(\Omega)\right)'$$
 is coercive, i.e.
$$\lim_{\|u\| \to \infty} \frac{\langle A(u), u \rangle}{\|u\|} = +\infty.$$

Proof. From condition d) it follows that

(2.9)
$$\langle A_0(u), u \rangle \geq c_2' ||u||_{W_2^1(\Omega)}^p - c_3',$$

where c'_2 , c'_3 are positive constants. By assumption f) we have

(2.10)
$$\langle B_1(u), u \rangle \ge -\int_{\partial \Omega} h_1(x, u) u d\sigma \ge 0.$$

From assumption g) and Hölder's inequality we obtain

(2.11)
$$|\langle B_2(u), u \rangle \ge \tilde{c}_3 ||u||_{W_2^1(\Omega)}^{\rho_2+1} + c_4 ||u||_{W_p^1(\Omega)},$$

where $\rho_2 + 1 < p$.

From condition i) we obtain

$$\begin{split} |\langle B_3(u),u\rangle| &= \left|\int\limits_{\partial\Omega} \left\{\int\limits_{\Gamma} \tilde{h}_3\big(x,\tau,u(\tau)\big)d\sigma_\tau\right\} u(x)d\sigma_x\right| \leq \\ &\leq \int\limits_{\partial\Omega} \left[\int\limits_{\Gamma} \left|\tilde{h}_3\big(x,\tau,u(\tau)\big)d\sigma_\tau\right|\right] |u(x)|d\sigma_x| \leq \\ &\leq \int\limits_{\partial\Omega} \left[\int\limits_{\Gamma} \left(c_3|u(\tau)|^{\rho_3} + k_3(\tau)\right)d\sigma_\tau\right] |u(x)|d\sigma_x = \\ &= \left\{\int\limits_{\Gamma} \left(c_3|u(\tau)|^{\rho_3} + k_3(\tau)\right)d\sigma_\tau\right\} \cdot \int\limits_{\partial\Omega} |u(x)|d\sigma_x \leq \\ &\leq c_5 \left\{||u||^{\rho_3}_{W^1_1(\Omega)} + \int\limits_{\Gamma} k_3(\tau)d\sigma_\tau\right\} ||u||_{W^1_p(\Omega)} \leq \\ &\leq c_5 ||u||^{\rho_3+1}_{W^1_1(\Omega)} + c_6 ||u||_{W^1_2(\Omega)}, \end{split}$$

where $\rho_3 + 1 < p$.

Consequently, by using (2.9), (2.11) we find

$$\frac{\langle A(u),u\rangle}{||u||}=\frac{\langle A_0(u),u\rangle}{||u||}-\frac{\langle B_1(u),u\rangle}{||u||}-\frac{\langle B_2(u),u\rangle}{||u||}-\frac{\langle B_3(u),u\rangle}{||u||}\geq$$

$$\geq c_2' ||u||_{W_{\frac{1}{p}}(\Omega)}^p - c_3' - \tilde{c}_3 ||u||_{W_{\frac{1}{p}}(\Omega)}^{\rho_2+1} - c_4 ||u||_{W_{\frac{1}{p}}(\Omega)} - c_5 ||u||_{W_{\frac{1}{p}}(\Omega)}^{\rho_3+1} - c_6 ||u||_{W_{\frac{1}{p}}(\Omega)}.$$

From this inequality, by using $\rho_2 + 1 < p$, $\rho_3 + 1 < p$ it follows that

$$\lim_{\|u\|\to\infty}\frac{\langle A(u),u\rangle}{\|u\|}=+\infty.$$

The proof of Theorem 3. By the Lemmas 1 and 2 the operator $A: W_p^1(\Omega) \to (W_p^1(\Omega))'$ is pseudomonotone and coercive. By using the well-known theory of pseudomonotone operators in reflexive Banach spaces (see e.g. [9]) we obtain that for any $\tilde{F} \in (W_p^1(\Omega))'$ there exists $u \in W_p^1(\Omega)$ which satisfies (2.3) for all $v \in W_p^1(\Omega)$ with compact support and so the proof of existence theorem is complete.

Remark 2. It is possible to consider more general second order partial differential equations

$$\sum_{|\alpha| \leq 1} (-1)^{|\alpha|} \partial^{\alpha} f_{\alpha}(x, u, \partial_{1} u, \dots, \partial_{n} u) + g(x, u) = F \quad \text{in} \quad \Omega$$

with nonlocal boundary condition (2.2), where in the terms g(x, u) and $h_1(x, u)$ no growth restriction is imposed with respect to u but it is supposed that g, h_1 satisfy the sign conditions $g(x, \eta)\eta \geq 0$, $h_1(x, \eta)\eta \leq 0$ (see [7] and [8]).

References

- [1] Adams R.A., Sobolev spaces, Academic Press, Now York-London, 1975.
- [2] Browder F.E., Pseudomonotone operators and nonlinear elliptic boundary value problems on unbounded domains, *Proc. Nat. Acad. Sci. USA*, 74 (1977), 2659-2661.
- [3] Browder F.E., Nonlocal elliptic boundary value problems, Amer. J. Math., 86 (1964), 735-750.
- [4] Carleman T., Sur la théorie des équations intégrales et ses applications, Verhandlungen des Internazionalen Mathematikerkongress, Zürich, 1932, Bd. 1, 138-151.
- [5] Chabrowski J., On nonlocal problems for elliptic linear equations, Funkcialaj Ekvacioj, 32 (1989), 215-226.
- [6] Gilbarg D., Trudinger N.S., Elliptic partial differential equations of second order, Springer, Berlin-Heidelberg-New York-Tokyo, 1983.

- [7] Hassan I.M., Nonlocal and strongly nonlinear third boundary value problem, Studia Sci. Math. Hung., to appear.
- [8] Hassan I.M., Nonlocal and nonlinear first boundary value problems for quasilinear partial differential equations, Annales Univ. Sci. Budapest, Sectio Math., to appear.
- [9] Lions J.L., Quelques méthodes de résolution des problèmes aux limites nonlinéaires, Dunod, Paris, 1969.
- [10] Simon L., On strongly nonlinear elliptic equations in unbounded domains, Ann. Univ. Sci. Budapest, Sectio Math., 28 (1986), 241-252.
- [11] Simon L., Nonlinear elliptic differential equations with nonlocal boundary conditions, Acta Math. Hung., to appear.
- [12] Simon L., Strongly nonlinear elliptic variational inqualities with nonlocal boundary conditions, Colloquia Math. Soc. J. Bolyai 48, Qualitative Theory of Differential Equations, Szeged 1988, 605-620.
- [13] Webb J.R.L., Boundary value problems for strongly nonlinear elliptic equations, J.London Math. Soc., (2), 21 (1980), 123-132.
- [14] Бицадзе А.В., Самарский А.А., О некоторых простейших обобщениях линейных эллиптических краевых задач, *ДАН СССР*, **185** (1969), 739-740.
- [15] Бицадзе А.В., К теории нелокальных краевых задач, ДАН СССР, 227 (1984), 17-19.
- [16] Скубачевский А.Л., Эллиптические задачи с нелокальными условиями вблизи границы, Матем. сб., 129 (1986), 279-302.

(Received May 23, 1991)

I.M. Hassan

Department of Applied Analysis Eötvös Loránd University Budapest, Hungary