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Abstract: This paper is based on an approach to formulating a fussy sets
theory basing on a model of fussy set suggested in Orlovski, 1990 [2]. That
formulation gives transparent interpretation of membership degrees and in this
formulation a theory of fuzzy sets is not treated as a set theory.
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1. INTRODUCTION

To apply methods of the fuzzy sets theory to analyze an informational
situation, one should "encode” his subjective knowledge in terms of membership
degrees. And this is a difficult task if one does not have a clear interpretation of
these degrees.

As G. Shafer, 1981 [3] put in the context of probabilistic models, such
interpretation should be based on descriptions of types of  canonical” informational
schemes for which the membership function appears to be a natural mathematical
description. Basing on such interpretation, an expert can compare an appropriate
canonical scheme with the type of information to be analyzed, i.e. perform a
"thought experiment”, and accept an appropriate membership function.

Refering to the possibility theory, R. Giles, 1983 1] wrote: ”...This does
not mean that an objective procedure for determining such a possibility must
be provided - indeed, most fuzzy concepts are a matter of opinion — but a
procedure should be laid down that allows an agent to translate his beliefs into
a numerical possibility, and gives some assurance that two agents who assign the
same possibility value do really have beliefs that agree in some tangible way.”

The theory of fuzzy sets in its present form is commonly understood as a set
theory, where set operations such as intersection, union, etc. play the basic role.
The difficulty with such an approach lies in that once introduced the set operations
must invariably be used within the theory; but practice shows that it is frequently
impossible to fulfill this requirement in applied problems. On the other hand, the
ease with which different definitions of the same operations are frequently mixed
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up within one line of analysis is not logically justified within such set-theoretic
framework.

In this paper basing on a different approach we repeat some basic definitions
from Orlovski, 1990 [2], then apply the concepts introduced to describe indepen-
dence of properties (and fuszy sets), and then give some informal considerations
concerning the structure of spaces of elementary properties.

2. SOME BASIC DEFINITIONS

Let P be a set and B be a class of subsets of P such that:

(a) Te B=> P\II € B;

(b) 9 € B.
We refer to B as a complete class of subsets of set P. Function u: B — [0,1] is
called a pseudomeasure on (P, B) iff it satisfies the following conditions:

(1) u(®) =0;
(2) T € Mg = p(I) < p(Ilz);
(3) w(P)=1.

With each pseudomeasure py on (P, B) we associate a function u* : B —
[0,1] as follows: u*(IT) = 1 — u(P \ 1), II € B. Clearly, this function is also
a pseudomeasure and we refer to u* as the pseudomeasure dual to uy. As can
easily be seen, u and u* are mutually dual. We call triplet (P, B, u) space with a
pseudomeasure.

Let (P;, B;,p;), ¢+ = 1,2 be two spaces with pseudomeasures. Consider direct
product P = P; x P; and denote by B! class of (rectangular) subsets of set P such
that

NeB'=>MN=I, xII;, II;€B, i=1,2.

We add to class B! sets of the form P\ II, II € B! and obtain a complete class
of subsets of set P, that we shall refer to as the complete class of subsets induced
by B!.

The next step is to equip (P, B) with a pair of mutually dual pseudomeasures,
based on y; and p;. For any set [T € B!, ie. I =1I; xII, II; € B;, 1+ = 1,2,
we put:

#(I) = min{p; (), p2(Mz)}, p*(IT) = min{p] (), p3(M2) }.

Next we extend this definition to the complete class B that includes also sets
of the form P\ II, II € B!, to make these functions mutually dual:
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u(P\M) =1 - p*(T) = 1 — min{uj(), u3(12)} =
= max{p(Py \ 1), pa( P2\ I2)},
s*(P\IT) = 1 - p(IT) = 1 - min{u, (M), u2(M3)} =
= max{p; (P, \ 1), p3(Pz \ Iz)}.

We call 4 and p* product pseudomeasures, and space (P, B, u) - product of spaces
(Piy Biypi), ¢=1,2.

The above definition of product pseudomeasures has an intuitively clear
justification that we give later on.

Suppose now, that we have a set X of objects and a space with pseudomeasure
(P, B,p). With respect to X we call elements of P elementary properties, and
elements of B - collections of elementary properties.

A set valued mapping a from space of elementary properties to class 2X of all
subsets of X such that for any z € X set a~(z) = {p|z € a(p)} belongs to B, is
called decomposable property defined for X on (P, B, u). Equivalently, we say that
a fuzzy subset a is defined for set of objects X, this fuzzy set being a collection of
objects form X showing decomposable property a. We shall understand proposition
z € a as any of the following equivalent assertions: ” z shows decomposable property
a”, and "z belongs to fussy set a”.

A function vg : X — [0,1] defined as v4(z) = p{a~!(z)} is called the
membership function of a. A value v,(z) of this function is interpreted as the
degree to which proposition z € a is true, i.e. the degree to which object z shows
decomposable property a, or, equivalently, the degree to which object z belongs to
fuzzy subset a.

3. DECOMPOSABLE PORPERTIES ON PRODUCTS OF SPACES
OF ELEMENTARY PROPERTIES

Let z be a set of objects, (Ps, B;), (Ps, Bb) be spaces of elementary properties,
anda: Py — 2%, b: Py, — 2% be properties-objects mappings. Denote by P direct
product P, x P, and by B - the complete class of subsets of P, corresponding to
B,, By. Suppose a mapping ¢ : P — 2X and a pseudomeasure u,, : B — [0,1]
(together with the respective dual pseudomeasure u,) are defined on B. Then we
can say that a decomposable property ¢ is defined for set of objects X such that
its set of elementary properties is the direct product P, x Py. The corresponding
membership function of ¢ has the form:

ve(z) = pas(c'(z)), z€X.
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Suppose now that the decomposable property c¢ in question is logically ex-
pressed as aN b, i.e. has the meaning of having properties a and b simultaneously.
This means that the mapping ¢ has the form: c(pa, ps) = a(ps) N b(ps), and the
pseudomeasure p, is such that p,s(a=1(z) x b~1(z)) is the degree to which z shows
properties a and b simultaneously.

Basing on ugp and 4, let us introcude the following functions on B, and B,
respectively:

Ha(lla) = pab(MazPo);  po(Tls) = pab(PazIls),
l‘;(nd) = l‘;b(nazpb); #;(Hb) = #;b(PGIHb).

These functions can be called projections of pseudomeasures g4, and u, on B, and
By, respectively. As can easily be shown, (uq,s]), (ks,43) are pairs of mutually
dual pseudomeasures on B, and By, respectively.

The pseudomeasures introduced above possess the following properties for any
I, € Ba, IT, € By:

(1) min{pa(Ta), us(Tls)} 2 pas(Mla % TIp);

(2) max{a(Pa \TLa), (P \ o)} > mas(P\ (Ia X Thy)).
Similar inequalities (1') and (2') are valid for u*.

Consider now decomposable properties a and b defined for set X by the above
mappings a(-) and b(-) and pseudomeasures u,, pp. We shall say that properties
a and b are independent on set X iff for any z € X:

pap(a™(2) x b-(2)) = min{ua(a(z)), m(b~}(z))},
pipla(2) x b71(2)) = min{ui(a~"(z)), wo(b~}(2))}.

As can easily be shown, the independence of properties a and b implies that we
have equalities also in similar inequalities (1') and (2'). Note, that if decomposable

properties a and ¢ are independent on set X, then they are independent on any
subset of X.

Suppose we have two decomposable properties a and b defined for set X of
objects, and we would like to consider a decomposable property c for X consisting in
showing both properties a and b simultaneously. Clearly, a mappingc: P,xP, = X
corresponding to such property should have the form ¢(pa,ps) = a(pa) N b(ps). To
complete the definition of this property we should define a pair of dual pseudomea-
sures p. and u; on P; X P,. Clearly, these pseudomeasures should be such that
their projections on P, and P, coincide with the respective pseudomeasures for
properties a and b. In other words, we should have:

sup pe(Ila x Ip) = pa(Tla), sup p(Ila x Ty) = pg(Ia),
N,€EB, N.€B,
sup po(Ila x Ily) = pp(ILs), sup p;(Ia x M) = pp(IT,).

My€EBy My€By
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Otherwise, pseudomeasures ., u> can be chosen arbitrarily basing on the meaning
that we put into property c. Possible examples for pseudomeasure u. can be:

a and b independent : p (I x ITp) = min{uq(11,), us(Ms)},

I“c(na X nb) = “a(na) : I‘b(nb),
pe(Mg x ) = max{pq(I1,) + pus(Ip) — 1,0}, etc.

As can easily be seen, the class of such possible pseudomeasures includes (but not
limited to) those obtained from 4 (I15), ps(Ils) using any of so called T-norms.

4. INFORMAL CONSIDERATIONS ABOUT THE STRUCTURES
OF SETS OF ELEMENTARY PROPERTIES

Suppose we have set X of objects, and two sets P, Q of elementary properties.
Suppose also that we have two object-properties mappings: a : P — 2X and
b: Q — 2%, such that a(p), b(q) are subsets of objects having properties p and ¢
respectively. Consider direct product P x Q and a mapping ¢ : PzQ — 2X such
that c(p, ) is the subset of objects each having properties p and ¢ simultaneously.

For any object z € X subset ¢c™!(z) C P x Q is the collection of elementary
properties that z has. Denote by ¢!, c; !(z) projections of ¢~!(z) into P and Q,
respectively. It can easily be shown that for any z € X set ¢~! is a rectangular
subset of P x Q, i.e. ¢c™!(z) = ¢ !(z) x c; (z). Rather than formally proving this,
we illustrate this fact using the following example.

Suppose the subset C = P x Q contains pairs of properties:
C 2 {(Pl) ql)) (p21 q2)1 (Pa, QS)) (Plﬂh)}-

This means, in particular, that object z has properties p; and g¢3, i.e. the pair
(p1,93) also belongs to C. Continuing this, we can easily see that C is indeed
a direct product of its projections into P and Q, respectively. In other words,
rectangular hall of any subset of C is also subset of C. Having this in mind, one
can say that set C of all pairs of properties of an object is, in fact, fully defined by
any its subset that has the same projections on P and Q as C.

Now we give some intuitive grounds for defining product pseudomeasure
using operation min. Let us call pairs of properties (p1,91), (p2,92) € P X Q
independent iff p; # p2 and q; # g2. Suppose first that P and Q each contain
M properties. Then, as can easily be seen, any inclusion-maximum subset of
independent properties in P X Q contains M elements and fully describes the
whole set P x Q as has been noted in the above paragraph. Take a rectangular
subset I = A x B of set P x Q with A containing m elements, and B containing
n elements. Then the total number of independent pairs of properties in II is
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equal to min{m,n}. Assume u(A) = m/M, and u(B) = n/M. If we understand
pseudomeasure of II as the relative number of independent properties contained in
it, then we have:

min{m,n m n
w(m) = P2} (7 Ry = min (), 4(B))

Suppose now that P contains M elements, and Q contains N elements. Let K
be the minimal number such that K = Aps-M = Ay -N with Aps, Ay being integers.
Using them we scale importances of elementary properties to comparable units by
"gpliting” every elementary property in P into Aps elements, and every elementary
property in Q - into Ay elements. As a result we have that both P and Q contain
K new elements each. -Then with the above understanding of pseudomeasure of II
as relative number of independent properties contained in it, we obtain:

() = min{Ayp -m, Ay -n}  min{Ap -m, Ay -n}
PO = mindw M, Ay N} K =
= min{m/Mr "‘/N} = min{l‘(A))l‘(B)}'
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