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AN AXIOMATIC APPROACH
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Abstract: In this paper an axiomatic justification of using generalised
arithmetic means as aggregation rules is presented. Necessary and sufficient
conditions are given in order to guarantee that the aggregated preference is
reflexive, T-transitive and S-complete. Finally we investigate the existence of a
maximal nondominated alternative in a finite set.
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1. INTRODUCTION

Assume that A is a set of alternatives, cy,...,c,, are m criteria defined by m
fuzzy preference relations Ry,..., R, on A, i.e. R;: A2 — [0, 1] are functions such
that for any a,b € A, R;(a,b) is the truth value of the statement

”a is not worse than b, according to ¢;”.

A key problem of multicriteria decision-making consists of aggregating prefer-
ences R;,..., R,, so that the aggregated relation R should reflect, in a sense, all of
the criteria and at the same time, R should enable us to select the *best’ alternative
from A.

Two previous results can be mentioned on aggregation of preferences. The
so-called ’aggregative operator’ introduced by Dombi [1] is based on the general
solution of a functional equation related to associativity. An alternative approach
was given by Dyckhoff [2]: autodistributivity was considered instead of associativ-

ity.
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In this paper we propose a third approach based on a result of Kolmogoroff [5].
Our final conclusion is the same as that of Dyckhoff [2]: the aggregated preference
R should have the following form:

Rlab) = w[fj A(Ri(a,5))]

where Ay,..., A, are the relative importances of criteria ¢;,...,¢m, respectively,
and ¢ is an automorphism of the unit interval

In a very common and important case all preferences R; are reflexive, transitive
and complete crisp relations. Even in this situation the aggregated preference Risa
furzy binary relation. So assume that fuzzy set-theoretical operations are modelled
by a De Morgan triple (T, S,n). The results of Ovchinnikov and Roubens [7], (8]
and Fodor [3] imply that there exists an automorphism ¢ of the unit interval such

that
T(z,y) = T%(z,y) = ¢~ '[max{g(z) + ¢(y) - 1,0}],
5(z,y) = $*(z,y) = ¢ [min{¢(z) + 4(y),1}],
n(z) =n(z) =¢7'[1-4(z)]
Denote n the composition of ¢ and ¥ ~!. Obviously, 5 is also an automorphism

of [0,1]. We give necessary and sufficient conditions on 1 under that the aggregated
preference R is reflexive, T-transitive and S-complete fuzzy relation.

Finally, applying these results, we obtain sufficient conditions on R;’s and 7
in order to guarantee the existence of a maximal nondominated element in a finite

A.

In this paper only the results are presented. For proofs see [4].

2. AGGREGATION OF PREFERENCES

Let A be a set of alternatives, ¢;,...,¢,, m criteria defined by m fuzzy
preference relations Ry, ..., R,,, where R;(a,b) is the truth value of the statement

”a is not worse than b, according to ¢;”.

Denote Ay,...,A,, the relative importance of ¢y,...,cm, respectively. This
m
means that A; >0and ) ) =1
=1

We distinguish three cases:
a) All criteria are equally important (i.e., \; =... = A, = 1/m).

b) All A;’s are rational numbers.
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c) All \;’s are arbitrary real numbers.

The aggregated preference is denoted by R™.

Case a: Equally important criteria.

Al
A2.
A3.

A4

A5,
A6.

B1.

B2.
B3.

B4.
Bs.
Bs.

In this case the following axioms seems to be natural:

R™(a,b) depends only on the values R;(a,b),..., Ry (a,b).

If Ry(a,b) =...= Ry (a,b) then R™(a,b) = Ry(a,b).

Aggregating Ry (a,b), ..., Rk(a,b), Rk+1(a,b),..., Rm(a,b) we obtain R™(a, b).
Now aggregate R;(a,b),..., Ri(a,b), the result is R*(a,b). Then substitute
each R; by R¥(1 =1,...,k):

R*(a,b),...,R*(a,b), R¥*1(a,b),..., Rm(a,b).

Aggregate these new values; the resulted preference is R™. Then let R™ (a,b) =
RT(a,b).

If a,b,c,d € A are such that R;(a,b) = R;(c,d) for 1 < ¢ < m — 1 and
R,.(a,b) < Rn(c,d) then let R™(a,b) < R™(c,d).

R™(a,b) depends continuously on the values Ry(a,b),..., Rn(a,b).

R™(a,b) is invariant under permutations of Ry,..., Rm.

Translating these axioms we get the following conditions:

For every m > 2 integer there exists M,, : [0,1]™ — [0, 1] such that R™(a,b) =
M,.(Ry(a,b),..., Rm(a,b)).

M(z,z,...,z) = z for every z € [0, 1].

ZiyeeeyThy Thktly---2Zm; U T = Mg(z1,...,2x) then M(zy,..., zm) =
M(z,...,2,Zk41,-- -, Zm)

Ty < Ym implies M (Z1,...,Zm—1,Zm) < M(Z1,...,Zm-1, Ym)-

M is continuous.

Let (¢1,...,tm) be a permutation of (1,...,m). Then M(zy,..., zm) =
M(zi,...,%,,).

Theorem 2.1. ([5]) M fulfils conditions B1-B6 if and only if there ezists a
continuous, increasing function f : IR — IR such that

m

Mm(zl,...,zm)=f‘1{f(51)+'“+f(5m)}. o

Case b: All )\;’s are rational numbers.
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Let us denote My 4n(Z1,---3Zm, ¥1,---,Yn) by M(mz, ny) for short if z; =
.=Zym =Z,Y1 = ... = Yo = y and all A;’s are equal. Then for any positive
integer p we have

M(pmaz, pny) = M(pM(mz, ny)) = M(maz, ny),

thus mn’ = nm' implies that

M(mz,ny) = M(mn'z, nn'y) = M(nm'z,nn'y) = M(m'z,n'y). (2.1)
m

Assume now that A;,..., A, are positive rational numbers with 3 A; = 1; where
=1

A; means the relative importance of criterion c;. In this case, according to (2.1),
it seems to be reasonable to define M) (z,,...,%,) as follows. Let p;,...,pm,q be
positive integers such that A; = p;/q. Then let A = (A1,...,An) and

My (z1,22,...,Zm) = M(p121,P2%2, .. ., PmZTm), (2.2)

where M is any function which fulfils B1-B6. Obviously, M, satisfies conditions
B1-B5. Using Theorem 2.1 we can obtain the following representation for M,.

Theorem 2.2. Assume that A{,..., A, are rational numbers. Then M, fulfis
aztoms B1-B5 if and only if the corresponding M fulfis B1-B6, s.c., if and only 1f
there ezists a continuous, increasing function f : IR — IR such that

Mi(z1,...,2m) = f“{f:»\af(z.-)}- (2-3)

)

Case ¢: All A;’s are arbitrary real numbers.

We can obtain representation (2.3) by approximating irrational Ai’s via
rational series.

Assume that M) (z,,...,zm) fulfils conditions B1-B5 and let
mj (z) = My(0,...,0,2,0,...,0), i=1,...,m,

where the only nonzero element z is on the ith place.

We can classify generalized means represented by (2.3) as follows

(a) mi(z) =0 for every j=1,...,m and z > 0, (2.4)
(b) m(z) >0 ,for every 7=1,...,mand z > 0, (2.5)
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Since values of relations lie in the unit interval, the following theorem can be
proved by using representation (2.3).

Theorem 2.8. Condstion (2.4) holds if and only if there exists an automorphism
¥ of [0,1] such that

My(z1,...,2m) = '/:'1[(1/)(::1)*‘1/)(::2)"’ ...tﬁ(:c,,.)*"‘]. (2.6)
a

Theorem 2.4. Condition (2.5) holds if and only if there ezists an automporhism
Y of the unit interval such that

M;(zl,...,zm) = \b-l (f:/\,iﬁ(t.)). (2.7)

(8]

It is reasonable to assume that we are dealing with an M), for which (2.5) is
true. Otherwise we would obtain a strange kind of aggregation : R(a, b) could be
zero even if R;(a,b) is close to 1(Rz(a,b) = 0). So in the rest of the paper we
assume that M, fulfils condition (2.5), i.e. M) has the representation (2.7).

3. FUZZY PREFERENCE RELATIONS AND STUCTURES

Assume that we have m crisp preference relations Ry, ..., R,, representing m
criteria ¢3,...,¢m. Even in this situation, according to results of Section 2, the
aggregated preference R is a valued relation. On the other hand, we need strict
preference relation P (based on R) to investigate maximal nondominated elements
of the set of alternatives A. Thus we need some notions and results from the theory
of fuzzy sets and preference modelling.

Assume that (T, S,n) is a De Morgan triple for modelling intersection, union
and complementation, respectively. Let R be any fuzzy binary relation on A. Then
R is called

- reflezive if R(a,a) = 1 for every a € A,
- T-transitive if T(R(a,b), R(b,c)) < R(a,c) for every a,b,c € 4,
- S-complete if S(R(a,b), R(b,a)) = 1 for every a,b € A.

In a very common situation, crisp preferences R; are reflexive, transitive and

complete binary relations. Let

R(a,b) = ¢~ (i N(Rila, b))). (3.1
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According to the results of Ovchinnikov and Roubens [7,8] and Fodor [3], there
exists an automorphism ¢ of the unit interval such that

T(z,y) = T*(z,y) = ¢ '[max{4(z) + ¢(y) - 1,0}],
S(z,y) = S®(z,y) = ¢ '[min{¢(z) + $(v), 1}},
n(z) =n®(z) =471~ 4(2)).
Thus we have two automorphisms of the unit interval: ¢ in the aggregation and
¢ in the set-theoretical operations. Let n(z) = ¢oy~!(z). Obviously, n is also an
automorphism of [0,1]. In the following theorems we give necessary and sufficient

conditions on reflexivity, T-transitivity and S-completeness of R. Let To(z,y) =
max{z + y — 1,0}.

Theorem 8.1. R 1s reflezive if and only tf all R; are reflezive binary relations
(r=1,...,m). o

Theorem 38.2. Assume that R; is transitive for 1+ = 1,...,m. Then R is T*-
transstive if and only if

T"(z,y) < To(z,y)- (3.2)
]

Theorem 3.8. Suppose that R; is complete fori = 1,...,m. Then R is S®-complete
if and only if

z+ y > 1 implies n(z) + n(y) > 1. (3.3)
(m]
Example 8.4. Let n,(z) = =I:,_'_(%F(p > 0). Then (3.2) is satisfied by any
7p. On the other hand, n, fulfils (3.3) f and only 0 < p < 1.

4. NONDOMINATED ALTERNATIVES

In this section we assume that A is finite. Let R be defined by (3.1). We
need also fuzzy strict preference P, associated with R, in order to investigate
nondominated alternatives (see Orlovski [6]), where for a,b € A P(a,b) means the
truth value of the statement

”a is better than 4”.
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Then
#np(a) = min N[P(b, a)] (4.1)

is the fuzzy set of nondomsnated elements of A, or in other words, u™V? (a) is the
truth value of the statement "there is no b € A better than a”. Finally, let

AND = {a € A; VP (a) =m€aAXpND(c) > 0}

be the (crisp) set of mazimal nondominated elements of A.

According to recent axiomatic approaches to the definition of P, proposed by
Ovchinnikov and Roubens [8] and Fodor (3], let

P(a,b) = ¢~ "[max{¢(R(a, b)) — $(R(b, a)), 0},

where ¢ is the same automorphism as in (7%, S%,n?). Then the following results
can be proved.

Theorem 4.1. If R 1s T*-transitive and S®-complete then AND s not empty. O

Theorem 4.2. If n s such that n(z) + n(1 — z) = 1 and T"(z,y) < To(z,y) then

there ezists a mazimal nondominated element in A. 0
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