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FFT METHOD FOR BIORTHOGONAL EXPANSION
WITH RESPECT THE INTEGRATED WALSH
FUNCTIONS

BERTHA GRANADOS

1. Introduction

In this work we investigate expansions of continuous functions with respect
to the integrated Walsh system. We give the biorthogonal system of the inte-
grated Walsh system in explicit form and prove that a subsequence of partial
sums of the biorthogonal expansion of a continuous functions is uniformly con-
vegent. It is also proved that in general, this is not true for the whole sequence.
In fact we prove that there exists a continuous function such that the whole
sequence diverges at a point. A subsequence of partial sums is represented in
terms of the Walsh transform of an appropriate function. It is proved that the
Fast Walsh Transformer /FWT/ can be used for computing very efficiently the
coefficients of the expansion and the partial sums for n = 2V n e V.

2. Biorthogonal expansion of functions with respect to the
respect to the integrated Walsh system

Let X = {f € C[0,1], f(0) = f(1)}. The dual space X’ of X is the space of
functions of bounded variation and every linear functional on X can be written
in the form

1

<fig>= /fdg (feX,ged).

0
It is easy to check that the integrated Walsh system

z

Hu(z) := /wn(t)dt (z €[0,1),n e N)

0

and the modified Walsh-system
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Wy = —W, (neN)

- _[=1 (0<z<1)
w°‘{ 0 z=1

are biorthogonal, i.e.
< Jm, W >=bmn (m,nGN).

Moreover, J = (Jn,n € N) is a closed system in X.
The biorthogonal expansion of f € X with respect J is defined by

1

fv i (/ fdie)Je.

k=0 7

The partial sums of this expansion are denoted by

m-—1 1
Smf =Y (/fdtb,,).]k (m=12.).
n=0 0

It is convenient to use the following modulus of continuity

w(f,?'") =
= supd{| f(2) ~ 1) | 2,y € [ EEL), k=027 - 1),

For the subsequence (S, f,n € N) the following result is true.

Theorem 1. Let f € X and n € N. Then partial sum S,,f is an

intepolating polygonal of f with nodes 2% , k=0,1,...,21e.

k
(Sznf(i';r)) = f(2—n) for k= 0, 1,...,2"
and (S,nf) converges uniformly to f on [0, 1] as n — oco. Moreover
” f - Saﬂf HOOS w(-f12_n)
where w(f,8) (6 > 0) is the modulus of continuity.

Proof. To prove the theorem we fix a function f € X with f(0) = f(1) =
0, and n € N. For any z € [0, 1] the partial sums can be written in the form
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m-1 1
(S Py = 3 ([ SOdew)(2)
k=0 0

1 m~-1
- / FOd(Y () Je(2))

k=0

where d; means that the integral is taken with respect to t.
Let us define

Mp(z,1) := :i: (t)Ji(2).
Then . )

(Snfe) = [ 1O Mn(2,0)
Now 0

Zm—-1
My (z,t) = / Z Wi () wi (u)du
k=0

<)
—
|

Tm-1
[ ¥ wi(t+u)du 0<t
T m-1
—[( w(t+u)—1)du t=1
. 0 k=0
( z
— [ Din(t + u)du 0<t
= K 0 z
z — [ Dp(t + u)du t=1
n 0

m-—1

<1

<1

where Dp,(u) = Y wi(u) is the Walsh-Dirichlet kernel. In the case m = 27
0

the kernel My, has=a simple form. Namely using Paley’s lemma for any

[1: € 2_kn') %%),k =0,1,..,2" — 1 we have
-1 if
_2"(3— X if
Mn ,t = * .
an(2,1) 0 if
z if
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=<
;\‘ A
- 3

Dl
n?

9 -1 if <
Mapn(—=,t)=< 0 if
= if

and consequently

1
k k
(S2ﬂf)(5i_) = /fdtM2"('2_n,t) = f(2—n
0

for k = 1,...,2". In the case k = 0 obviously

f(0) = (S2» f)0) = 0.

Fix n € N and z € [0,1). Then there exists a k such that 0 < k < 2" and
n € I(k,n) := [, &£L). Since (S~ f) interpolates the function f at [, ££1),

there exist a, 8 € [0,1] with @ + 8 = 1 such that
(S2n (=) = (S2n f)( &y + B(S2n gy
Consequently
| (S2v fz) = f(2) | < @ | (S2n )y = F() | 48 | (S2n f)( 42 f(2) |
k k+1
=al f(z5) — £(2) |48 | (=) = (@)
< w(f, I(k,n))

where w(f,I(k,n)) = sup | f(z)— f(y) | . Therefore
z,y€l[k,n)

| Sznf = f llo< (£,277).

3. Fourier analysis and syntesis

For any f € X we can represent the partial sums Son f,n € N with
respect to the integrated Walsh system using the Walsh transform of a suitable
function. In fact we have the following
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Theorem 2. Let f € X and N € N. Then partial sum
2N-1 1
(1) (Sanf) = k):o ([ fdwe)Ji
=0 0

can be written as

(2)  (Sanf(z) = ofz}f ' Fn(k)wg(t)dt

k=0
where Fy(k),k =0,1,...,2Y — 1 are the Walsh-Fourier coefficients of the func-
tion Fy :=[0,1] = R defined in the following way

1 k+1

Fn(z) = 2V (o2 — fo ) g S 2 < S k=0,1,.,27 1.

Proof. Denote by wi(a — 0) the left-hand side limit of the function w
at the point a. Then using the Abel transform, the Stieljes integral of f € X
with respect to wi(0 < k < 2V) can be written in the form

2"-1

/ fain = 3 F) () — o~ 0)
- - if( () - ()
2"—1
- Y NER Ly

By the definition of F we get

2N

/fdw,, 9-N 2 FN(2N)w;,(2N)—

1
= /FN(t)wk(t)dt = FN(k).
0
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Consequently
2Ny 1
swf= 3 ([ fawe)a
k=0 )
2V -1 2N
= Z FN(k)Jk =/ Z FN(k)U’ky
k=0 ) k=0

the theorem is proved.

When we represent the partial sums S,~ in the form given in the above
theorem, we can use the algorithm called Fast-Walsh transform given by F.
Schipp and P. Simon in [2]. The latter makes it possible to compute the Walsh
transform Fp very efficiently.

Using this algorithm we require N2V arithmetic operations to get the
values Fy(k),k=0,1,...,2N8 — 1.

Identity (2) can be used to compute the partial sums (Sy~ f)(z) at the

points z = g’fv(k =0,...,2V), i.e. make Fourier systems. To this end we first
use FWT to compute the sums

2N

> Fn(Nuwe() (t= 2LN,£ =0,..,2Y)
k=0

and then compute the integral of this function.

4. Divergence of the biorthogonal expansion of a continuous
function

We know that the subsequence {S;~ f} converges uniformly to f for any
f € X. In what follows, we shall prove that there exist a function fo € X and
a point zo € [0, 1] such that the whole sequence {(Sn fo)(z,)} diverges.

Let fn(t) = signDy,, (t)J92~(t)22",n € N where
n-—1
m, =3 2% (neN).
k=0
We define
Anfn = Sm..+1fn - SZ"'fn'

Since sign Dy, Ja2» is absolutely continuous, integration by parts gives
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22n

Bofd=" o ([ e} () =

22" 4ma-1 1

= E ({ signDy,, (t)J2n (t)22"dtf)g(t))Jk(z) =

k=23»

22|\+m.

=2 k—z';:.-l(‘z signDp, (t)wl‘"(t)wk(t)dt)‘h(:) =

z 1 22" 4ma—1
=92n ffsigan. (t)ID22n (t) E wk(t + s)dtds =
00 k=22~

z1 . m.—l
= 22" [ [signDp, (t)waan(s) Y- wi(t + s)dtds.
00 k=0

Now for z = 35y we have that wi(s) = 1 for 0 < k < 2201 If
0< s <z = 355y, then

I 1 1
(Anfn)(;‘_}:n_) = 2%n / / sign Dy, (1) Z wi(t)dtds.
0 0 k=0

It is known /see [2]/ that

/|D...,(t)|dt2§ (neN),
0

consequently
I 1
(B fn)(rdery = 277 / / | Drm (t) | dtds
0o 0

1
— 92n 2
=22, /|D,,,,(t)|dt2 5
0

Since || fn ||= 1, we have
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| &nfn 2

|3

Therefore, using the fact that sup || San ||< 00, we get
n

” Smm+1 ”2” Anfn ” - || 522- ||-* o0 as n — O0.

Then by the Banach-Steinhaus theorem, there exist a function fo € X and
zo € [0,1] such that sequence {(Sn fo)(z,)} diverges.
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