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ON TWO-SIDED INEQUALITIES FOR
STOPPED RANDOM WALKS IN
ORLICZ-SPACES

N.L. BASSILY*

Abstract. The aim of the present note is to generalize the work done by N.L.
Bassily, S. Ishak, J. Mogyorédi in [1] and by J. Mogyorédi in [2]. Namely, a modified
form of the well known Burkholder-Davis-Gundy inequality [3] and [4] as well as a
Rosenthal type inequality c.f. [2] are used to study the behaviour of the almost sure
limit S, — av of the generalized stopped random walk in Orlicz-spaces. Here S, =
=Y14+Y2+...4Y,,n > 1, where Y;,i > 1, is a sequence of i.i.d. random variables
with E(Y;) = a finite, i > 1. Also v is a stopping time with respect to the increasing
sequence of o-fields F,, = o(Y1,Ys,...,Ys),n > 1 such that P(v < 4o00) = 1.
Estimates for the supremum of the stopped partial sums of i.i.d. random variables
with zero mean in Orlicz-spaces are given.

1. Introduction

For z > 0 let us consider the function ®(z) = [ ¢(t)dt, where the integrand

0

#(t) is right-continuous and increasing with ¢(0) = 0 and ‘lim é(t) = +oo.
—00

Then, as it is known, ®(z) is continuous, increasing and convex function of z,

having the property that ®(z)/z increases and

2z _ o, pim 22 -

+o00
z|0 T zi400 T

The function & is called a Young function. Consider the generalized inverse of
é, i.e. let Y(t) = ¢~1(t). ¥(t) has the same properties as ¢(t), i.e. it is non-
decreasing and right-continuous such that %(0) = 0 and ‘liin YP(t) = +oo.
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Consequently, the function ¥(z) = [ (t)dt is also Young function. ¥(z) is
0
called the Young function conjugate to ®(z). ® and ¥ mutually determine
each other.
Examples for pairs of conjugate Young functions are the following:

a) forp>1

zP z?
P(z)=—, ¥Y(z)=—,
(=) ’ (=) .
where ¢ is the conjugate power of p,i.e. p~! + ¢! =1;
b) ®(z)=€* -z —1,9(z)=(z + 1)log(z + 1) — z.

For every Young function ® we define its power p by the formula

p = sup 29(z)
z>0 ®(z)

In case a) both Young functions have finite power, namely, p > 1 and
g > 1, respectively. In case b) the Young function ®(z) has infinite power
whilst its conjugate ¥(z) has a finite one.

We say that the random variable X defined on the probability space
(2, A, P) belongs to Orlicz space L? = L®(Q, A, P), if there exists a num-
ber a > 0 such that E(®(a~! | X |)) < 1. In this case we define

| X lle=inf(a > 0: E(®(a™! | X |)) < 1).
It can be easily proved that || - || is a seminorm. More about the Young

functions and Orlicz spaces can be read e.g. in [5].

Given a martingale (X,, Fy,),n > 0 with Xo = 0, let dy = 0 and d; =
Xi — Xi-1,7 > 1, be its difference sequence. The quadratic variation of the
martingale is defined by

V=V(X)= (i d})!2.

1=0

Let

X* =sup | X, |,
n>1

be the maximal function of the martingale (X, F,,),n > 0.
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Let ®(z) be a Young function with finite power p. Given a martingale
(Xn, Fp),n > 0, the Burkholder-Davis-Gundy inequality says that

ca E(®(V)) < E(B(X*)) < CoE(2(V)),

where cg > 0 and Cs > 0 are constants depending only on .

This inequality is meant in the generalized sense, i.e. the left and the right
hand sides are finite if and only if so is E(®(X*)). In this case the sequence
{Xn}2, is uniformly integrable and thus there exists a random variable X
such that X, = E(X | F,) a.s. for every n > 1, e.g. we can take for X the
a.s. limit of {X,}5%,, which exists under the condition E(®(X*)) < +oo.
Moreover, X = limn — +00 a.s. X, = Xoo€L®. Suppose that || V [|e< +0o.
In this case we say that the a.s. limit X of {X,}5%, belongs to the Hardy
space Hg generated by the Young function ¢ and we define

I X lre=IlV lls

Thus, || - ||#, is a seminorm.

Suppose that ® has finite power p and that || V || as well as || X* ||s
are positive and finite. Then the above Burkholder-Davis-Gundy inequality
implies that

() | X" lle<p2 |V lle
holds with some constant p; > 0 depending only on ®. In fact,
E(@V/ IV |le)) =1, and if a T +00 then ®(V/a || V ||a) tends decreasingly

to 0. Consequently, there exists a p; > 0 such that Co E(®(V/p2 || V ||e)) = 1
is satisfied. It follows that

E(@(X"/p2 | V ll2)) < CaE(2(V/p2 || V |l2)) =1

‘which implies (1). Similarly we can easily prove that

(2) NV lle< pr |l X™ lle
holds. Namely, again by the Burkholder-Davis-Gundy inequality we have

ca E(2(V)) < E(2(X™))

and
E@(X*/ || X* |ls)) = 1.
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So, if a T +00 then ®(X*/a || X* ||¢) tends decreasingly to 0. Consequently,
there exists a p; > 0 such that éE(Q(X‘/pl || X* |le)) = 1 is satisfied. It
follows that

E@(V/p || X" [la)) < éE(‘I’(X‘/m X" lle) = 1,

which implies (2). Comparing (1) and (2) we get

1 .
®3) o IV lle<ll X* lla< p2 || V lle,

which is the Burkholder-Davis-Gundy inequality in its seminorm form (4).

Inequality (3) says that the almost sure limit X of the martingale
(Xn, Fn), belongs to the Hardy space Hg if and only if the maximal function
X* belongs to L%.

2. Inequalities for the Stopped Random Walks.

Let Y3,Y5, ... be independent and identically distributed random variables
(i.i.d.) and let So = 0 and S, =Y, + ...+ Y,,n > 1, be the corresponding
random walk. We shall suppose that E(Y}) = a is finite.

Consider the o-field F,, = o(Y1,...,4Y,),n > 1, and let Fo = (¢,Q) be
the trivial o-field. Then the sequence {S, — na, F,},n > 0, is a martingale
with respect to the increasing sequence {F,}3,.

Given two real numbers a and b we introduce the notation aAb = min(a, b).
If v is a stopping time with respect to {F,}3%, such that P(v < +o00) = 1,
then the sequence (Syan — a(v A n), Fy,) is the martingale {S, — na, Fn}32,
stopped at the moment v. The almost sure limit of {Syan —a(v An)}3%, exists
on the event {r < 400} whilst we define it to be equal to 0 on the null event
{v = +o0}. So, the limit n_lirfoo(S.,A,, — a(v A n)) is equal to S, — av on the
event {v < +o0o} and equals 0 on {¥ = +00}. This limit can be expressed in
the following two equivalent forms:

D (Yi—a)x(+o0 > v > i) =Y (Sa — na)x(v = n),
i=1 n=1

where x(A) stands for the indicator of the event A.
The differences of the martingale (S, an —a(vAn), F)3%, are the following:

n=0

do = 0,d; = (Y; —a)x(v > 1), i > 1. Note that Y; — a and x(v > i) are
independent.



ON TWO-SIDED INEQUALITIES... 67

In theorem 1, the necessary and sufficient condition for the a.s. limit
S, — av of the stopped random walk to belong to Hg is given.

Theorem 1. The a.s. limit S, — av of the martingale {S,rn—
—a(v An), F,}3, belongs to Hg, where ® has finite power p if and only if

(+) IV lle=Il QO (¥ — a)2x(v > ))"/? ||le< +oo.

i=1

Moreover, if ¥, the conjugete Young function has a finite power ¢, then

4 1
¢ =11V |l Sy — av [le<
P1
<l sup | Suan —a(v An) [[le< p2 | V [le,
n—

where p; and p; are the constants defined in (3).

Proof. The first part is an immediate consequence of the martingale-
theoretic results cited in the preceding section.

Further, if the power ¢ of ¥ is also finite then by the Doob inequality (see
[6],[7]) we have

I sup | Syan — a(v An) |[le< gsup || Suan — a(v An) o=
n>1 n>1
=q||S —avlls.
From this it follows that

1 _
ol IV lle<ll Sy — av [la<

<llsup | Sunn = alv An) o< p2 [Vl
n_

This proves the assertion.
Remarks:

1) If the necessary and sufficient condition (*) holds then necessarily
|| Y1 |le< +o0. In fact, | Y1 — a |< V and so by the monotonity of the norm

IY1 —alle<|| V [la< +o0.

From this by the Minkowsky inequality for norms we get



68 N.L. BASSILY

IYille<liYi—alls +lalle=|| Y1—-alla +]|a]llL|la< +oo.

2) If P(K2 >| Y1 —a |> K;) = 1 is satisfied with some constants K2 >
K; > 0, then

Ki | v2 [le<l V llo< K2 || 12 |la -

Indeed, we have

K2 <V < Kp'/?

and the monotonity of the norm implies the preceding inequality.

3) The result of Theorem 1 is the generalization of Theorem 1a) of the
paper [1] for p > 1. In fact, let &(z) = zP/p with p > 1 and z > 0. Then the
necessary and sufficient condition (*) says that the almost sure limit S, — av
of the stopped random walk belongs to Hg = H,, if and only if

[E(Q_(Yi — a)*x(v 2 )P/H)]P < 400

i=1

holds. In this case
g P E(()(Yi — a)’x(v 2 i))/?) <
i=1
< E(S,—av |P) < E(sup | Syan —a(v An) |P)
n>1

< GE((Y_(Yi — a)’x(v 2 ))y/?)
i=1

where ¢, > 0 and Cp > 0 are constants depending only on p.

From the Davis inequality [4] we also see that the assertion is true also for
p =1 as follows:

aB((Q_(Y: - a)’x(v 2 ))'/?) < Elsup | Sunn — alv An) |) <

i=1 n
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< ClE((i(Yi ~ a)’x(v 2 4))'/?)

i=1

where ¢;, C) are positive constants.

3. A Generalized Rosenthal Type Inequality for the Stopped Ran-
dom Walks

Another more useful inequality can be obtained for S, — av and
sup | Syan —a(vAn) | by using a Rosenthal-type inequality. Let (X, Fy),n > 0
n>1

be a martingale with Xo = 0 and let do = 0, further d; = X; — Xi_;,i > 1,
be its difference sequence. We introduce the conditional quadratic variation by
the formula

s = S(X) = (Z E(d'2 | F.'_l))llz.

i=1
Let ®(z) be a Young function with finite power p. Consider the Young function
®'(z) = ®(z?). Then, &' also finite power, namely,

24(z2
P = sup 2z%¢(z%)

—— =2p.
>0 ¢(:172) P

Let us also suppose that the conjugate Young function ¥'(z) of ®’ has also
finite power ¢’. Then Theorem 1 and Theorem 2 of [2] say that

(@) eal)_ E(2(d]) + E(2(s7)] <

i=1

< E(®(( lim  as. X7))) < E(®(X™) <

< Cal3 B(@(d)) + E@(),
=1

where ¢ > 0 and Cg > 0 are constants depending only on ®. This is a
Rosenthal inequality. In the language of the Young function @’ this can be
expressed in the following form:
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(@) eald_ E@'(1 di ) + E(®(s))] <
i=1

< E@( lim as. | Xa ) < B(@(X")) <

< Ca[Y_E(@'(| d; ) + E(®(s)))-
i=1

The quantities in this inequality are quite simple when considering the
stopped random walks. We formulate the corresponding result in the language
of the preceding inequality in the Orlicz-spaces.

Theorem 2. Let us suppose that the Young function & has finite power p.
Consider the Young function ®'(z) = ®(z?) and its conjugate ¥’(z). Suppose
that the power of ¥’(z) is also finite and denote it by ¢’. Then, the almost sure
limit of the stopped martingale belongs to Hg, if and only if E(®'(| Y1 |)) and
E(®'(v'/?)) are finite. In this case we have the inequality

(¢') " eamin(1, 0*)[E(¥'(| Y1 - a ) E(v) + E(@'(v'/?)] <
SE@(S, —av|) < E(Q'(igri | Suan —a(v An)|)) <

< Comax(1,0*)[E(¥'(| Y1 - a ) E(v) + E(®'(v'/?)),

where ¢y > 0 and Cp > 0 are constants depending only on &.

Proof. The power of &' is now equal to 2p. The quantities in the above
Rosenthal-type inequality are the following:

YE@(1di ) =) E@®(d}) =Y E@((Y: — a)’x(v 2 i) =

i=1 i=1 i=1

=Y E(®((Y: — a)?))P(v > i) = E(®((Y1 — a)?))E(v) =

i=1

= E(®(1Y1 -a|)E(®)
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and

E(®'(s)) = E(®(s”)) = E(®(Y_ E((Y: —a)* | Fic1)x(v 2 ) =
i=1
= E(Q(azv)) = E(®'(ov'/?)),

where we have denoted 02 = Var Y;. Now the inequality is the following:

() ea[E(@'(I V1 = a ))E(v) + E(¥'(ov'/?)] <
SE@(IS —av|) < E(Q’(:m;;; | Suan —a(v An) ) <

< Co[E(¥'(| Y1 = a ) E(v) + E('(ov'/?)).

The left-hand the right-hand sides are finite if so are 02 and E(v). In fact,
from the finiteness of E(®'(] Y; — a |)) the finiteness of o2 follows. Also, from
the finiteness of E(®(r!/2)) we can deduce the finiteness of E(v). For this
purpose let us remark that the right-hand side derivative of ®'(z) is 2z¢(z?).
Let zo > 0 be such a quantity for which 2zo¢(z2) > 0. Then trivially

®'(z) > 2z0d(z2)(z — z0)*, ze€[0, +00).

This implies that

E(®' (/%)) > 2204(20) E((v — 20)*).
Consequently,
E(®'(v'/?)
2z0¢(z2)

Therefore, E(®'(v'/?)) < +oo implies that E(v) < +oo. Similarly we can
prove that from E(®'(] Y1 — a |)) = E(®((Y1 — a)?)) < +oo it follows that
o? = E((Y1 — a)?) is finite.

By the convexity of ' and by the fact that &’ has finite power 2p, we have

EWw)< E((v—z0)*)+ 20 < + zo.

min(1, %) E(¥' (v'/?)) < E(®'(ov'/?)) <
< max(1, e?)E(®' (v}/?)).
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Consequently, our inequality for the stopped random walks is the following:

(¢') " camin(1,0*)[E(®'(| Y1 - a ) E(v) + E(¥' (v'/?))] <
< E({®(1 Sy —av ])) < E(®'(sup | Sunn —a(vAn) ) <

< Camax(1,0%)[E(®'(| Y1 — a |))E(v) + E(¥' (v'/%))).

Thus for S, — aveHs, it is necessary and sufficient that E(®'(| Y1 —a |)) and
E(®'(v'/?)) be finite.

This proves the assertion.

Remark. In [1] the same inequality is proved for the case of &(z) = z?/p

with p > 2. So, the assertion of the present theorem is the generalization of
this special case.
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