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APPROXIMATE SOLUTION FOR AN ELASTIC
PROBLEM BY SPLINE FUNCTION

ALI SHAUKET MOHAMED

Computing Center of L. Eotvos University
Budapest 1117. Bogdanfy u. 10/b

1. Introduction

The elastic problems have many types and are formulated in
different forms. In this work we shall consider an elastic axisym-
metric cylinder subjected to torque T applied at both ends (see
FIG. 1.1). Following the problem formulation introduced by C.W.
Gryer (1), we shall give an approximate solution to the problem
by using spline functions together with the more general boundary
conditions.

FIGURE 1.1. An axisymmetric cylinder

The problem formulation (See (1)) can be in a two dimen-

sional domain {2 in the rz-plane because of the axial symmetry
(FIG. 1.2).
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FIGURE 1.2. The domain 02

The problem reduced to find function u which must satisfy
the elliptic differential equation:
(1.1)
3,1 0u 3,1 0u

=55 alsg) =% G

together with the boundary conditions:
(1.2)

u = 0; on ['y;
(1.3)
u = f2(2); on T;;
(1.4)
%——g—z ©1(r); on Ty
(1.5)

where I'y,I'; ,T'; and I'; are as shown in Figure 1.2.
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Remark 1. Aforementioned formulation assumes the material
state of the problem is only elastic, that is the increasing of the
stress function ¢ = r~2(\/u) is limited by a constant k (k can be
determined from the material property) in order that the plastic
region would not be formulated. We shall consider the elastic-
plastic problem in our forthcoming work.

In this paper we intend to discuss the construction and the
properties of the spline functions, as well as using Ritz method to
obtain the approximate solution of (1.1), and proving its conver-
gence.

2. The spline functions construction.

The domain Q (FIG. 1.2) is divided into (nxm) rectangular
subdomains by lines parallel to the rectangular coordinates.
Let
(2.1) ~
QUL UT, UT; UT3 =UG;;; t=0,n—1;

J=0m—-1;n>1;m>2;

where

Gi; ={z,r|z2<2<241;r; <r<rjp;2=1-h,;
r; =3 hjzo =0,2, = Z;r0 =0,r,, = R}.

Let the solution of (1.1) be approximated by the spline func-
tion:
(2.2)

u(z,r) = Sa (2,r) := Si;(2,r); in G;;.

In constructiong S, (2,r) the following steps have been con-
sidered
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(i) Sa (2,r) in every subdomain is identical with a polynomial
of two variables.
(ii) Let S, (2,r) satisfy (1.1) in the interior of the subdomains
(2.3)
AS; ;(2,r) =0; in G;;.

(iii) Depending upon the result of (2.3) we can choose a min-
imal degree polynomial of two variables that satisfy (2.3) nontriv-
ially, therefore, we get
(2.4)

Si;i(z,7) = A jr* + B, ;v*2+ Ci;z+ D, ;5

where A; ;, B; ;,C; ; and D; ; are arbitrary constants.

(iv) The spline functions (2.4) are supposed to be continuous
in 1.

Remark 2. From formula (2.4) we can obtain the exact so-
lution of (1.1) for the one and two dimensional problems when
©1(r) = p2(r) =0 and f, = constant. Thus u = f,r*/R*.

Hence, we can suppose that (2.4) gives a better approximate

solution to (1.1) with the more general conditions (1.2 - 1.5), than
a piece wise linear approximation.

Let us rewrite formula (2.4) in the analogous form:
(2.5)

S,"j (Z, r) =a; (r‘ - r:) + b,"j (r‘ - r;)(z - Z,')'l‘

+¢;(z—2z)+di;;1=0n—1;7=0,m—1;

where a; ;,b; ;,c; ; and d; ; are arbitrary constants.

We suppose that (2.5) will only satisfy the main boundary
conditions (1.2) and (1.3) but not by all means the natural bound-
ary conditions (1.4) and (1.5) [2].

Therefore (2.5) shall have the following forms in the first and
last rows in (1
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(2.6)

Sio0(z,7r) = ‘1".0”4 + b.'.o"4 (z - Z-'); t=0,n—1;
(2.7)

Sim-1(27) =i m-1(r* = R*) + b, o, (r* — R*)(2 — ) + f2(2);

t=0,n—1.

For the other rows in {1 (i.e. j = 1,m — 2) the spline functions
shall have the form (2.5).

THEOREM 1. The continuous spline functions (2.5) exist in
Q and satisfy the boundary conditions (1.2) and (1.3).

PROOF. The conditions that the spline functions (2.5-2.7)
be continuous in 1, and take on the main boundary values, are
expressed by the following system of equations

(2.8)

a;; +bi (%41 —2)—a4,;=0 t=0,n-2,7=0,m—1.

(2.9)

C,"j(z,'.'.l - z.‘) + di.j - di+l,j = 0; i= O,n - 2,j = l,m — 2.

(2.10)

a;ory —d;y =0; t=0,n—1.
(2.11)

biori —ciy =0; t=0,n—1.
(2.12)

@ ;(rje, — 1) +diy —dijy1=0; §=0n—1,7=1,m—-3.
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(2.13)

bij(rje, —ri)+ei—¢€s1=04i=0n-1,7=1,m-3.
(2.14)

ai.m*Z(r:n—l - ":n-z) +dim-2— ai.m—l(":n—l - ':n) =

=f2(7—;)’ i=0,n—l.

(2.15)

bim—2(ra_y — "f..-z) tCm-a—bim-1(rm_y —Tm) =

_ fa(2i+1) _IZ(z"); 1=0,n—1.
Ziy1— &%

The system (2.8-2.15) has 2(2mn-m-2n+1) equations and
4(mn-n) coefficients. The analysis shows that there exists (mn-
nm+1) dependent equations in the system. By deleting the depen-
dent equations from the system (using the equations (2.10) (2.12)
and (2.14) for i=0 only) we get the system M of N = (3mn-3n-
m-+1) independent equations and 4(mn-n) unknown coefficients.
Then by induction we get that the rang of matrix P(P is the co-
efficient matrix of the system M) is equal to the rang of matrix
P(P is obtained by adjoining to marix P the column made up of
the right hand side terms of the system M). Therefore the system
M is consistent (3) and its solution exists but not unique, hence,
we have now a family of continuous splines in 1.

3. The spline functions properties.

We have a space of continuous spline functions, where these
splines are statisfing the main boundary conditions and contains
(mn-n+m-1) free coefficients. Ritz method has been chosen to
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obtain the solution of (1.1) together with the natural boundary
conditions (1.4) and (1.5).

By reformulating the original problem equivalently, we can
see that a generalized solution of (1.1) exists in a Hilbert space.
To prove this let

(3.1)
r4
u=1-+ u; a=E;f2(Z),
therefore,
(3.2)
Au=Ai=0

From (1.1)-(1.5), (3.1) and (3.2), we obtain the following non-
homogenous problem for @

(3.3)
L r df(2)
Au=F:= R dzz '

(3.4)
%(2,0) = @(z,R) =0,

(3.5)

o =-a0) =) - 2 29,
(3.6)

di 4 df,(Z
RN =-0a) = alr) - 1 D),

which is equivalent to (1.1)-(1.5).

Now the domain of definition of the operator A(1.1) is
(3.7)

D(A) = {v | Av € L;(01),v(2,0) = v(2, R) = 0}.

Let us define the inner product [2,4,5]
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(3.8)
1 0udv OJdudv
[u,,v] = / ;5' 5;:; + Ea—z]dzdf,
1]

where (3.8) is bilinear finctional and has all the properties of the
inner product in the Hilbert space, therefore we can define the
energetical Hilbert space H, (H, here also denotes the weighted
Sobolev space (1)):
(3.9 5
1
Hy = {v] 55((52)

v(2,0) = v(z, R) = 0}.

H%W%hm

If u,v € H,, then the product (3.8) make sense [2,4,5].
Let the norm of v in H, be as follows
(3.10)
[v] = [v,v]*/2.

Now if for every v € H,, i satisfies the following equality
(3.11)

o= (Fop) e [T 920V
[@,v] = (F,v) := 7 da azdzdr+
1]
R 1 R 1
+ E;Ql(r)v(o,r)dr+/ﬁQg(r)v(Z,r)dr;
0 0

then % is the generalized solution of (3.3)-(3.6) [2.4].
It can be seen that the operator (F,v) is bounded in H,
(3.12)
| (F,v) |< efo],

if the following are satisfied
(1) 2 (2) € w;[0, Z],
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(%) == Qx (r) € L2[0, R],k =1,2.

Therefore, the generalized solution # of (3.3) exists in the
Hilbert space H, (2), and according to that the generalized solu-
tion v = @ + % of (1.1) exists too.

The approximation of the generalized solution is sought in a
set of splines by the Ritz method, and from the variational method
theory (2.5), @ is minimizing the functional J(v):

(3.13)
J(v) = [v,v] — 2(F,v).

To use the continuous conditions of the set of the splines S, ,
we rewrite the form of the functional (3.13):

(3.14)

J(Sa) =[Sa,Sa] —2(F,Sa) +§:,\,-,g,-,,

k=1

where A; (k = 1, N are the Lagrange multiplayers, g; are left hand
side functions of the independent system of equations M. There-
fore the approximate solution of the original problem is the spline
functions which minimizes the functional J (3.14). Notice that in
the system of equations, which will appear as a consequence of
minimizing (3.14), it is needed to use the equations g; = 0 too,
according to the theory of Lagrange multiplayers.

Now let us consider the spline functions density for the one
dimensional problem in detail, and briefly for the two dimensional
problem, because of the similarity between the two problems.

The one-dimensional problem is reduced to find the function
u(r) which must satisfy the differential equation (1):

(3.15)

with the boundary conditions u(0) = 0,u(R) = T.
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The generalized solution of (3.15) is approximated by the
following spline function
(3.16)
Sa(r) = 8;(r) = a;(r* —1}) + d,

r; <r<rj,;,dy =0.

S (r) is supposed to be continuous in (0, R) and so from the
connections between the polynomials (3.16), we get the following
system of equations
(3.17)

a;(riyy —r5) +dj =djiy.

It can be seen that the properties and the definitions given
for the spline functions in the two-dimensional problem can be
applied for the one dimensional problem too. Therefore, we can
get the approximate solution of (3.17) by using a similar functional
to that of (3.14). The functions g; in (3.14) now have the following
forms

(3.18)
9 = a'l'c(r;+1 - r;) +dic - dl’e+1°

~ Note it is easy to see that S,(r) € W} N C and S, (r) €
H,nC.

THEOREM 2. The set of the splines S, (r) (3.16) in a limit
sense is dense in H,, that is for every f(r) € H, there exists
S (r) such that

[f(r)—Sa(r)]—0 if h, = 0(m — o),
at the same time for f(r) and S, (r) the following are true
I £(r) = Sa()lle, =0 if k. —0,
| f(r) = Sa(r)lws =0 ¢f h, >0,

where h, = maz | r;4, — 1, |.
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PROOF. We remark that from Lemma 1 (which will be pro-
ved later on) it follows that f(r) € W, . Therefore there exists at
least one point r, in the interval (r;,r,,,) such that &(r,) exists
and bounded.

Let the form of the spline functions in (r;,7;4,):

(3.19)

Sa(r) = §() = gy + L=l oy,
j+1 )

where f; = f(r;). It is obvious that (3.19) is continuous in all the
interval (0, R).

The Taylor’s expansion in the neighborhood of r.in(r;,r,,,)
(6):

(3.20)
flr) = f(f)+(r—r) (f)+0If re |y

where it can be written that o | r—r, |=0|r—r. |**!, 0<d<
1.

Formula (3.20) can be used to get the expansions of f;, f; 4,
in (3.19). Subtracting (3.19) from (3.20) we get

(3.21)
| 70) = 8 () 1= L (r.) - ok2) + 0(az+).

For the all interval (0, R), we get
(3.22)

I £(r) = Sa(r)lle, = O(Z*?).

The first derivatives of (3.19) and (3.20):
(3.23)

ds;(r) — fivr — 1 i3,

«
dr T r
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(3.24)
df(r) d
dr df( )+0(|7’ rcl )
Subtracting (3.23) from (3.24), we obtain
(3.25)
df(r) _ (") df
I dr |_ (
and since 4%a{r) are bounded in (0, R) and f(r) € W, we have
(3.26)

¢) - 0(h) +0(h%),

d ds,, )
| L) 25y, 0, m) = o(a).
Therefore from (3.22) and (3.26), we get
(3.27)

I £(r) = Sa () llw; = O(R").

For the norm in the H, space, we have
(3.28)

R

16) = Sa OO =i= [ ZIZ076) = Sa (D

0

The norm (3.28) can be written as a sum of integrals over
the subdomains (r,,r;+1). More precisely, because f(r) € H,,
the Taylor’s expansion of f in the neighborhood of r = 0:
(3.29)
f(r) =bsr® + b, +...,

and so from (3.23), (3.28) and (3.29), we get
(3.30)
1.4 . .
[ 3506 - ssoFar = o(s2)

0
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For 3 > 0 the integrals exists and bounded
(3.31)

1 od \
[ L) - satrar <

Si /O(hzd)dr=0(hfd+l)
j .

Finally the norm for all the interval can be written:
(3.32)

h,

[£(r) = Sa(M]]? = / [ ~(f(r) = So(r)*dr+

0

ml-'l

+23 S (/() — Sa ()dr =

m-1
h2 + Z h .0 h2d) (hﬁd)

=1

Therefore from (3.10) and (3.32) we get

(3.33)
[£(r) — Sa(r)] = O(7).

The proof is complete.

If f(r) € W2 N H,, we can get a better estimations than
that obtained in Theorem 2, and to show this we introduce the
following theorem:

THEOREM 3. If f(r) € W2 n H,, there exists S, (r) such
that the following estimations are true
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[£(r) = Sa(r)] = O(k,),
I £(r) = Sa(r)lle, =O(R),
I £(r) = Sa (r)llw ; = O(h.).

PROOF. Because f(r) € W} there exists at least one point

r. on the interval (r;,r;4,) such that ‘;—:',L(r.,) exists and bounded.
The Taylor’s expanstions of f at the neighborhood of r. on
(risris1):

(3.34)

16) = 16 + Mh L () + Q)

where

AMhy=r—r., |A <1

The Peano’s form of the remainder in (3.34)[6,7]

Q) =xrEl ey o,

" dp

hence, we have that | Q, (r) |= 0(k3?).

Using for the spline functions the form (3.19) and subtract it
from (3.34), we get

(3.35)
| £(r) = Sa(r) |= O(k7).
For the all interval (0, R), we get
(3.36)
I £(r) = Sa ()l = O(RY).

Subtracting 2%alr) from 4} where the Peano’s form for
the remainder in expansion of 4 is | Q;(r) |= O(k,), we get
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(3.37)
| df(r) _ dSa (r)
dr dr

Since 45417} are bounded in (0, R) and f € W2, we obtain
(3.38)

= 0(h,).

df(r) dSa(r)
I dr dr

Therefore from (3.36) and (3.38), we get
(3.39)

lzs(0.r)= O(R,).

I £(r) = Sa (r)llw ; = O(h.).

Following Theorem 2, we can get the norm in H, space:
(3.40)

70) =S8 00F = [ Sl - soFars

0

m-1 Tit1

+ 3 [ FlgUe) -saenpar=

-1
E) r

— o)+ 3 b, -0(82) = 0(h2).

Therefore from (3.10) and (3.40), we get
(3.41) ‘
[£(r) = Sa(r)] = O(k,).

The proof is complete.

The density of the spline functions for the two-dimensional
problem will be introduced according to the following Theorem:
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THEOREM 4. The set of the spline functions S, (2,7) (2.5)
in a limit sense is dense in H, space. More over, if f(z,r) €
W2 N H,, the following estimations are true

[/(2,7) — Sa(2,7)] = O(h, + h,),

| f(2,7) = Sa(2,7) ||, = O(h} + A),

| £(2,7) — Sa(z,7)|lw; =O(hs + k),
where h, = maz | 2,4, — % |, h, = maz | rjp, — 15 |

The proof of this theorem can be accomplished in a similar
manner used in the proofs of Theorems 2 and 3.

4. Convergence of the approximate solutions.

LEMMA 1. In the one-dimensional problem (3.16), for every
u(r) € H, there exists a constant ¢, such that

Fullw sy < exful.

PROOF. For the L,-norm of the first derivative of the func-
tion u on the interval (0, R), we get
(4.1)
d T d
Wiz _ 2
150, = [ 157 drs
V]
1 .4d
< R3 - __'f 2_ ps .
= / r | dr B [u, ]
V]
Let
(4.2)

[ du [ 3 1 du
= | —dz= /3 _—_ =2~
“ da:dx /1: [z3/2 d:z:]dz'
0 0
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Using Cauchy-Bunyakovsky’s inequality to the integral (4.2)
(4.3)

R
r 1  du
u? </ 3dz/ 3/2| |)2 T{/z—s Eadt,

we get
(4.4)

uw;_/ua</ " drlu,u] = wr

0

Therefore, from (4.1) and (4.4), we obtain the norm of the
function u in W} .

(4.5)

R6
ully 2 < (R + 250wl

3
CI=RVR+}22_0,

then, from (4.5) and (4.6), we get
(4.7)

Let
(4.6)

I ullw s < eful.

The proof is complete.

LEMMA 2. In the two-dimensional problem (1.1), for every
u(z,r) € H, there exists a constant ¢, such that

I “"W; < ¢, [ul.

PROOF. For the L,-norm of the first derivative of the func-
tion u(z,r) in Q, we get
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(4.8)
ou ., 1  OJu
- < 3 ~ 127 .
" az "L2 —_ R /ra l az I dZd"

a

ou . s [ 1  0u ,
| 3eEe < B [ 515 1 ddr

9]

(4.9)

Therefore, from (4.8) and (4.9), we obtain
(4.10)

" ”L2+ ” ”La <R [u,u].

Let
(4.11)

[ du [ 1 Ou
u(z,r) = / a—z(z,z)da: = /33/2 —7 a(z,z)dz.
0 [}

Using Cauchy-Bunyakovsky’s inequality to the integral (4.11)
(4.12)

2(:zr)</ °dz/—|—zx |? dz <

. et hufind 2
< / 2 ax(z,z)l dz.
0

Integrating the both sides of (4.12) over the domain 1, we
get

(4.13)

z

1 , Ou
/;‘;Ia—'l dzd:z:

0

‘NS

R
/uz(z,r)dzdr g/
0

9]

R
dr-/
0
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R [1 Ou,
—%/r—s"a—fl dzdr.

a

Let
(4.14)

[ [ 1
u(z,r) = / a—:(z,r)dy = rS/z/ <7 | —(y,r) | dy.
0

0

Using Cauchy-Bunyakovsky’s inequality to the integral
(4.15)

Z
u’(z,r)Sr’z/ll— wsk [ S5 P

0 0

Integrating the both sides of (4.15) over the domain 1, we

get
(4.16) 3
R*Z® (1 Odu
/u’ (2,r)dzdr < 5 /; | P |* dzdr.
0 a
Therefore, from (4.13) and (4.16), we obtain
(4.17)
6 2
2/u2 (2,r)dzdr < max(?—o, RSTZ)[u,u].
a
Hence
(4.18)

R® R:Z?
2< -
| u|>< maz(— 0’ 4 )w, u].

Finally, from (4.10) and (4.18), we get the norm of the func-
tion u in w}
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(4.19)

2 2

1 R® Z
luliy s < B (1 + maz(, 2w, u],

The proof is complete.

THEOREM 5. The approximated solutions S , obtained by
the minimization of the functional (3.14) over a family of splines,
individualy, for the one and two dimensional problems are conver-
gent to the generalized solutions in the W} norm:

I o — & llws—0, if h—0.

where 4, are denote the generalized solutions of the original dif-
ferential problems (1.1) and (3.15), and let h = maz | h, | or
h =maz | h,,h, |

PROOF. The generalized solutions %, satisfy the following
equality
(4.20)

[ao - é]? = [&0 - g,ﬁo - g] = J(S’) - J(ao).
Because S are minimizing the functional J, for every spline
function S, , we have
(4.21)
J(8) = I (fio) < J(Sa) — J (o) = [l — Sal?,

therefore, from (4.20) and (4.21), we obtain
(4.22)
[&o - S] S isnf[&o - SA].

Hence, from (4.22), Lemma 1 and Theorem 2, respectively,
from (4.22), Lemma 2 and Theorem 4, we have
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(4.23)
Il i — Sllw 3 < Cliio — 8] < Cinflio — Sa] = 0

tf h—0.

The proof is complete.

Remark 3. We denote that if 4, are the classical solutions
of the problems (1.1)-(1.5) and (3.15), it mean, %, € D(A) and
at the same time #, € W?. Therefore, in this case, Theorems 3
and 4 can be used with (4.22), Lemma 1, Lemma 2 to obtain the
better estimations for || %, — S ||:

Il G0 — Sllw 3 = O().
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