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1. Introduction

The increasing interference between lines running in close
vicinity is one of the consequences of the continuous growth of
electric power network, electrified railway systems and telecom-
munication lines. This interference may result in danger to per-
sons working on and using the telecommunication facilities, fault
in the equipment and degradation in the transmission quality. An
accurate analysis of the interference is difficult mainly due to the
complexity and great number of influencing factors. Lately, great
efforts have been made to develop sophisticated modelling of the
problem reflecting the real physical phenomena. When an ade-
quate algorithm is applied the problem can be solved utilizing the
possibilities supplied by the computer techniques [1].

The inductive coupling is the most common form of inter-
ference. Its result can be limited to a reasonable level with ap-
propriate screening given by the sheath of telecommunication ca-
ble. The screening effect can significantly be improved by the
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use of steel-tape armour around the metallic cable sheath. This
ferromagnetic armour is excited by the induced sheath current
resulting an additional impedance in the sheath-to-earth circuit
causing its non-linear variation. In addition, the screening action
is influenced by the earthing of the sheath which is realized by the
distributed conductance to earth and discrete earthing applied at
least at the line ends.

Traditionally, the screenig action is taken into consideration
by the nominal screening factor. This is only applicable when
the sheath is perfectly earthed, which is generally an unrealistic
assumption is practice.

In this paper the screening action of a cable sheath will be
studied, for any conditions in practice, solving the sheath-to-earth
circuit. An equivalent transmission line model is given which is
described by a system of differential equations with appropriate
boundary conditons. The mathematical problem is solved by a
numerical algorithm using a multiple shooting technique. This
technique enables to consider the value of impedence due to steel
armour in accordance with excitation of the actual magnitude of
the sheath current. The calculations will primarily result in the
distribution of the sheath current and the sheath-to-earth voltage.
When the current is multiplied by the sheath resistance the lon-
gitudinal field strength (e.m.f.) affecting the telecommunication
circuit is obtained. The results of computer simulations related
to a given cable sheath, and various case and parametric studies
will also be presented.

2. Principles of calculating the screening effect

When the results of inductive coupling is to be determined as
a starting point, the longitudinal electromotive force (e.m.f.) E,
per unit length, induced along the telecommunication line will be
calculated. It is given by the product of the mutual impedance,
per unit length, between the inducing and induced circuits and
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the inducing current. The value of E may vary with respect to
the length coordinate x measured along the induced line due to
the variation in either the mutual impedance (case of non-parallel
lines) or the inducing current.

The telecommunication circuit in a metal-sheathed cable is
actually affected by the e.m.f. E, occuring inside the sheath
(Fig.1a). Its value can be expressed as
(2.1)

E,(z) = Rq. - I(z)

where R;. is the d.c. resistance, per unit length, of the sheath
and I(x) is the sheath current at location x. For a cable sheath
having continuous leakage to the earth the calculation of E, can
be performed by either of the two ways hereunder.

a. Calculation by the sceening factor

Assuming a perfectly earthed sheath, the following simple
relationship exists between E(x) and I(x):

(2.2)

E(z) =Z - I(z)

where Z is the series impedance, per unit length, of the sheath-
to-earth circuit. Substituting the sheath current from (2.2) into
(2.1) yields

(2.3)

Rdc
Z

E,(z) = —-E(z).
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Fig.1. Representation of the sheath-to-earth circuit of an
induced cable
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Defining the sceening factor k of the sheath as

(2.4a)
k= E,(z) _ R4 -I(z)
E(z) E(z)

we get from (2.3) for the nominal screening factor ky

(2.4b)

_ Ry,

==

So the screening factor k can be calculated from the parameters
of the sheath-to-earth circuit. On the other hand the e.m.f. E,(z)
with the consideration of the screening effect is given by

(2.5)

kx

E,(z) = ky - E(z).

For a steel-armoured cable, Z depends on the magnitude of the
sheath current (see Fig.2), i.e. it reads Z(| I |). Consequently,
considering (2.2) and (2.4b) the screening factor can be expressed
as a function of | E | , i.e. it reads k(| E |).

In order to determine E, (z), using the screening factor, we take
the following steps: (1) calculate E(x); (2) take the value of k(|
E |) to the relevant | E |; (3) calculate E,(z) by (2.5).

Calculation by the solution of the sheath-to-earth circuit

When the sheath-to-earth circuit is not perfectly earthed,
(2.2) does not applicable any more. Thus, to obtain the sheath
current I(x) the sheath-to-earth circuit equations should be solved.
This circuit can be represented by a two-wire transmission line ex-
cited by a distributed e.m.f. E (Fig.1b). For the sheath-to-earth
voltage U(x) and sheath current I(x) the following system of dif-
ferential equations can be written:

dU(X)

T = ZI($)+E(:B),
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(2.6)
dI(z)
dz

where I is the distributed shunt admittance of the sheath-to-earth
circuit, which represents the conductance G, per unit length, of
the leakage between the sheath and the earth. Its value is assumed
to be uniform along the line.

=T-U(z),

It is worth mentioning that U(x) and I(x) are complex functions
and they are replaced by their real and imaginary parts for the
numerical algorithm:
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U(z) = U,(z) + jU; (z),

(2.7)
I(z) = I (z) + 5 I,(z),

where j is the imaginary unit, so the system (2.6) results in a
system of four equations with real functions.

Z, the distributed series impedance of the circuit is function of the
modulus of the current I(x), i.e. of

(2.8)
| I|=v/12+17,

and can be written as
(2.9)
Z(|I)=R(| I)+3X(|I]),

where the resistance R and reactance X are taken in 1/km, namely
R(|I|)=0.05+R.(|I]),

(2.10)
X(|I])=0.579+X,(I]).

The values 0.05 and 0.579 are the resistance and reactance of the
earth return path at 50 Hz, respectively, while R, and X, are the
resistance and reactance of the outer surface impedance of the
sheath with external (earth) current return.

They include the additional impedance due to steel armour which
depends on the sheath current. The magnitude of R, and X,
are known from measurements at discrete current values, being
used as prescribed values of cubic spline functions which are to be
determined in the numerical algorithm (see 3).

The current dependence of R and X results in nonlinearity of the
system (2.6).
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The induced e.m.f. E(x) is assumed to be known in complex form
as
(2.11)

E(z) = E,(z) + jE;(z).

In practical cases, the exposures are represented by equivalent
paralelism, thus E(x) is given in form of stepwise constant function
with respect to x.

The boundary conditions are given by the voltage current rela-
tions, i.e. Kirchoff’s equations on the left-hand termination (x=a)
and on the right-hand termination (x=b):

U(e) — Z, - I(a) =0,
(2.12)
U(b) + 2, - I(b) =0,

where Z, and Z, are the complex earthing impedances at the
relevant ends of line (Fig.1b). The boundary conditions are also
replaced by their real and imaginary parts for the numerical algo-
rithm.

3. Mathematical modelling

The mathematical model of the problem presented in 2 can
be written by the following system of N differential equations,
(3.1)

Y'(z) = F(z,Y(z),G(H(Y (z))), S(z)), ze[a,b]C R

where

Y ()
Y(z) = € RY
Yy (2)
is the function to be determined on the interval [a,b],
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H(Y)=H(Y,,...,Yy)ER

is an explicitly given function of N variables,

G,(H)
G(H) = : € R
Gi(H)

is a function given at certain discrete values of H (measurements),

S (z)
S(z) = € R’
Sy (z)

is a piecewise constant function given on the interval [a,b],

F(z,Y,G,S)
F(z,Y,G,S) = : € RV
Fy (z,Y,G,S)

is the right-hand side of the differential equation (3.1) supposed
to be sufficiently smooth function of (N + !+ v + 1) variables,

satisfying the following linear and separated boundary conditions
(3.2)
AY (a) =¢, BY(b) =d,

with given matrices A € R**¥ /B € R**" and given vectors
c € R*,d € R?, for which the numbers p and q are assumed to
satisfy the relation p+q=N.
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Here the function Y(x) corresponds to the real and imaginary
parts of the voltage U(x) and the current I(x), such that

Yi(z) :=U,(z), Ya(z):=I(z),
Y;(z) := Ui(2), Yi(2) = L(2),

therefore N=4,

H(Y) is given by (2.8) as | I |, i.e. H(YY) := VY:? +Y,?,
G(H) corresponds to the real and imaginary parts of the complex
function Z figuring in (2.9) and (2.10) given by measurements at
discrete values of the current I, that is

G, (H) :=0.05+ B, (H), G,(H):=0.579+ X, (H),

consequently 1=2,

S(x) includes the e.m.f. components E,(z) and E;(z) appearing
in (2.11), so v=2, i.e.

S,(z) := E,(z), S;(z):= E;(z).

The system of differential equations (3.1) corresponds to the sys-

tem given in (2.6) and written into their corresponding real form,
that is

Yy (2) = G\ (H(Y (2)) - Ya(z) - G (H(Y (2))) - Yi(2) + 51 (),
Y,'(2) = G2 (H(Y (2)) - Ya(2) + G1 (H(Y (2))) - Ya(2) + 55 (2),
Yo' (z) = A, - Yi(2) — A; - Ya(2),
Yi(z) = A2 - Yi(2) + A, - Ya(2),

where A, and ); are given constants.

Concerning the boundary conditions (3.2) they are given by their

complex forms in (2.12), so p=2 and q=2 for their corresponding
real forms.
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Now we transform the problem as follows. Through the introduc-
tion of v additional functions and differential equations

Yy +1(z) := Si(2), Yya(2) =0,

Yuro(@)i=Su(),  Yy,,(2) =0,

the problem (3.1) - (3.2) is seen to be equivalent to the following
multipoint boundary value problem of dimension n=N+v:
(3.3)
v (z) = f(z,y(z)), z€[a,b]CR,
y(z) € R",

with linear and separated boundary conditions of the form
(3.4)

A’y(a) =c", By(b) =4,

(3.5)
A7 y(z7 )+ At y(zf) =8, 1=2,3,..., M -1,
where
( Y (z) \
0 (2) :
. Yy (z)
= i =@
yn(:B) ( )
Y+ ()
fl (3, y)
flz,y) = : =

fa (r;, Y)
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Fl(zayly-'°’yNsG(H(yls“-,yN))’yN+1,“-$yN+v)

= FN (z’yla'“’yNaG(H(yl’---’yN))ayN+la'"’yN+v)

0
c
A= A 0 GR(’H"’)X", ¢ = Sl.(a) € RPYY,
0 I, :
S.(a)
B* :=(B 0)€ R™*", d':=de R,
A‘— = _In eRan, A:f‘ = In eRan,
(0 )
0 n .
§; 1= Sl(:z;‘)—Sl(z;‘) € R", 1=2,3,....,.M—1,
\5.(z¢) - 5.(27)/

z; are the points of the interval [a,b] where the function S(x) has
discontinuity (jump increase or decrease),
y(zF), wy(z7), S;(zf), S;(z;)  are the usual right and
left limits at z = z,,
I, is the n x n identity matrix.

We assume that f is twice continuously differentiable with
respect to y in the regions {); := [z;,z;;,] X R", and continuous
in x on the subintervals (z;, z;, ] between the boundary points.

We suppose that the problem (3.3) - (3.4) - (3.5) has a solution,
which we denote by y*(z).
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4. Numerical algorithm

In order to solve the problem (3.3) - (3.4) - (3.5) we use a
multiple shooting technique [1.]. To compute the right-hand side
f(z,y) of the differential equation (3.3) and its partial derivatives
at any interior points of [a,b] we use third order spline functions
[2] (for computing the function G, which is given at discrete points
only), which are determined before beginning the interative cycles.
of the shooting method.

To prepare the interations let us first choose intermediate
points z; in [a,b] so that they will be, together with the given
points z; of discontinuity, suitable for the convergence of the mul-
tiple shooting technique.

Let us order and re-label the points a,b,z; and the chosen
points z; asa = ¢, < t; < ... <t, = b, and consider t as
the new independent variable. We assume initial approximations
y(t}) to be given for all these points except the last one, i.e. for
1=12,....m—1.

At the k-th step of the procedure we solve the following initial
value problems

41) v =fy0), t € [t;,t541]s
(42)  y(t;) ="y(t}), i=1,2,.,m—1,

and denote the solutions by *y;(t), j=1,2,...m—1.
Let us introduce the error functions

(4.3)

te [tj’tj+1]’
j=1,2,.,m—1,
for which we have

(4.4)

B0, () = f(t,y° () — £, y; (2)), t € [t t41],

7=1,2,..,m—1.
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Then consider the following initial value problems
(4'5) ”'(t) = va(t’ky.i(t))”(t)’ te [t:"tj+1]’

(4.6) n(t;) =y () — *y; (¢5), Jj=12,.,.m—1,

the solutions of which approach the functions (4.3) according to
truncated Taylor’s series expansions about (¢,*y; (t)) in (4.4).
Now let us solve the initial value problems of the following matrix
differential equations

(4.7) W (t) = D, f(t,*y;(2))¥(t), tE€ [t b1,
(4.8)  W(t,) =1, i=1,2.,m—-1,

where ¥(t), I, and D, f are the n X n transition matrix, identity
matrix and Jacobian matrix, respectively. Since the solutions of
the initial value problems (4.5) - (4.6) can be obtained by linear
combinations of solutions from fundamental systems, the error
functions (4.3) approximately equal the linear combinations of
the columns of the solutions of the problems (4.7) - (4.8). Con-
sequently, if we denote the solutions of the problems (4.7) - (4.8)

by *4;(t) we get

(4.9) *n;(t) = * o, (t)*v; t € [t;,t541],
j=1,2,..,m—1.

where the unknown vector coefficients *v; approximately equal

the values of *n,(t;) according to the substitutions of ¢; for t in

(4.9). So (4.9) can be replaced by

(410)  y*(t) = Py, (8) + 59, () 0 (2,), ¢ € [ty,t544],
j=1,2,...,m-1.

In order to determine the approximate values of *7,(t;) we sol-
vethe system of linear equations (4.11) which results, using the
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approximations (4.10), from the boundary conditions (3.4)-(3.5)
and continuity conditions y*(t; ) = y* (¢} ) at the chosen points:

A**n, (tl) =c* — A%y, (tl))
B.kwm-l(tm)knm—l(tm—l) = d‘ - B‘kym—l(tm)’

R () i (G- 0) =i () = Ry () Ry () 5 #£Lm
at points t; of continuity,
(4.11) k k k
A7RW, o (8) -0 (8-0) + AT Fns(t5) =

=s; — A7 *y; -1 (t;) — AT Fy; ()

at points ¢; of discontinuity.
From the solution of the system above and according to (4.10) we

obtain the new initial values in (4.2) for the (k+1) -st step of the
algorithm:

Friyed) ="*y(t}) +*n,(t5), 7j=12,...m—1.

At the end of each iterative step we check the accuracy of the
approximations using prescribed (mixed absolute/relative) error
tolerances for the fulfilment of the boundary conditions (3.4) -
(3.5) and the continuity conditions at the chosen points ;. When
the tolerances are met we finish the computations.

5. Numerical examples and relults

Numerical calculations have been performed for a telecomuni-
cation cable containing concentric aluminium wire screen (Ry. =
0.493Q/km) and double steel tape (30X0.5mm) armour. The mea-
sured and spline interpolated values of the outer surface impedance
of the sheath are shown in Fig.2.
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Fig.2. Resistance R, and reactance X (1/km) of the surface
impedance versus the current (A)

Concerning the earthing of the sheath a distributed uniform
leakage with conductance G, and discrete earthing at both ends
with identical resistance ha been assumed. In the parametric

study, for the earthing conditions of the sheath the following three
cases were considered:

Case | Conductance G | Earthing resistance R, = R,
no S/km N
1 0.1 100
2 2 5
3 10 0

Case no.1 results in a very weak earthing while no.3 realizes prac-
tically a perfect earthing of the sheath.

When specifying the induced e.m.f. a parallel exposure be-
tween an electric traction line and the telecommunication cable
was assumed with a uniform mutual impedance of 0.267 1 /km,
phase 79.4 degree, at 50Hz. For the inducing current of traction
line three versions were considered: uniform current produced by
simple feeding system and lenght varying current of an autotrans-
former feeding system under normal operation and short circuit
condition. The e.m.f. are listed in Tab.1. for the three cases
considered.
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Table 1. Versions of induced e.m.f. considered

Induction by traction line with

Section  simple feeding autotransformer system
length system under
coordinate normal operation short circuit

modulus | phase | modulus | phase | modulus | phase
km V/km | deg. | V/km | deg. | V/km | deg.

0-1 16.84 |98.9° | 62.39 |98.9°
1-2 25.15 |90.5° | 93.16 [90.5°
2-3 96.39 |85.9°| 29.15 |84.7°| 108.0 |84.7°
3-4 30.32 |81.4°| 112.3 |81.4°
4-5 29.38 | 80.6° | 108.8 |80.6°

Total [V] 482 85.9° | 130.1 | 85.9° 482 |85.9°

Results for a selected version of parameters are listed in -
Tab.2., where the screening factor k and the nominal screening
factor ky are defined by (2.4a) and (2.4b), respectively. For the
comparison of different versions the sheath current (Fig.3) and
the sheath-to-earth voltage (Fig.4) functions of length are pre-
sented. In addition, the components R, and X, (Fig.5) of the
surface impedance have been also plotted together with the nom-
inal screening factor ky (Fig.6.).

To interpret the effect of earthing conditions of the sheath on
the sreening action, results for uniform e.m.f. are worth examining
at first. The condition G=10 S/km and zero earthing resistance
at both ends results in perfect earthing, thus the sheath current
is uniform and the sheath-to-earth voltage is zero at any location.
As a consequence of the uniform current the excitation of the
sheath is uniform as well, therefore there is no variation in R
and X, thus the screening factor ky shows a uniform value as
well. Considering the average earthing conditions occuring in the
most practical cases, i.e. G=2 S/km and 50 earthing impedance,
it can be seen that along the middle section, i.e. between 1.5 - 3.5
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km, the sheath seems to be perfectly earthed, while the quantities
vary at the vicinity of the line ends which are the so called end-
effect zones. In the case of weak earthing, i.e. G=0.1 S/km and
1000} earthing, the whole length is composed of two end-effect
zones resulting in continuous variations in the quantities under
study.

Concerning the results for length varying induced e.m.f., when
G=10 S/km, the sheath current follows more or less strictly the
variation in the e.m.f.; when G=2 S/km, the magnitude of current
in the middle of the line follows the average e.m.f. levels of part
sections; while when G=0.1 S/km, the current curve does not fol-
low the local variations in e.m.f. at all. The consequences of these
current variations can be seen in all of the studied quantities.
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Table 2.
Results for uniform e.m.f., G = 2S/km, R, = R, = 501

ENF. YOLTACE CORRENT 14 M X f
4] BODOLOS  PBASE  NODOLOS  PEASE  MODOLDS  PHASE BODOLDS  P3ASE  MODOLOS  PBASE
0.0 9.639B+01 85.9 3.678E401 238.2 7.356B+00 238.2  0.620 0.647 3.527B-01 298.7 3.762B-02 152.2
0.2 9.639E+01 85.9 2.275E+01 225.4 1.908E+01 234.7  0.955 1.069 2.554E-01 301.4 9.757E-02 148.8
0.4 9.639E+01 85.9 1.322R+01 209.7 2.588E+01 230.4  1.405 1.384 2.0188-01 306.6 1.324K-01 1444
9.6 9.639B+01 85.9 7.742B400 192.5 2.353B+01 226.6  1.§90 1.541 1.797B-01 309.4 1.5108-01 140.7
0.8 9.639E+01 85.9 4.709K+00 175.5 3.137B+01 223.6  1.822 1.611 1.711B-01 310.5 1.6058-01 137.7
1.0 9.6398+01 85.9 2.966B+00 159.8 3.224R+01 221.4  1.880 1.642 1.676B-01 311.0 1.649E-01 138.5
1.0 9.6398B+01 85.9 2.966B+00 159.8 3.224R+01 221.4  1.880 1.642 1.6768-01 311.0 1.6498-01 135.5
1.2 9.639E+01 85.9 1.9078400 146.1 3.2610+01 219.9  1.904 1.654 1.6628-01 311.2 1.6688-01 133.9
1.4 9.639E+01 85.9 1.2318400 134.5 3.273B+01 218.8  1.911 1.658 1.6878-01 311.2 1.674E-01 1329
1.6 9.639E+01 85.9 7.8658-01 124.8 3.2M4B+01 218.1  1.912 1.658 1.6578-01 311.2 1.6758-01 132.2
1.8 9.6398+01 85.8 4.908B-01 116.8 3.271E+01 217.7  1.910 '1.657 1.6588-01 311.2 1.6735-01 131.8
2.0 9.639K+01 85.8  2.9208-01 110.4 3.267Ks01 217.4  1.908 1.656 1.659B-01 311.2 1.6718-01 1313

9.6398+01  85.9  2.820B-01 110.4 J.267R+01 217.4  1.908 1.656 1.6598-01 311.2 1.671E-01 1315
9.639E401  85.9  1.534B-01 105.8 3.264B+01 217.3  1.306 1.655 1.6608-01 311.2 1.6708-01 1313
9.6398401  85.9  4.765B-02 103.4 3.263B401 217.2  1.905 1.655 1.661B-01 311.2 1.669R-01 1313
9.639R+01 859 2.3028-07 3.2630401 217.2  1.905 1.654 1.661B-01 311.2 1.6698-01 131.3
9.6398+01 859  4.7658-02 283.4 3.263B¢01 217.2 1,905 1.655 1.6613-01 311.2 1.669E-01 131.3
9.639E401  85.9  1.534B-01 285.8 3.264B+01 217.3  1.906 1.655 1.6608-01 311.2 1.6708-01 131.3
9.6398+01  §5.9  2.920B-01 290.4 3.267K+01 217.4  1.908 1.656 1.658E-01 311.2 1.671B-01 1313

P
o onem o

3.0 9.639R+01 85.9 2.9208-01 290.4 3.267R+01 217.4  1.908 1.656 1.659E-01 311.2 L.671E-01 1315
3.2 9.639E+01 85.9  4.909E-01 296.8 3.2ME+01 217.7  1.910 1.657 1.6588-01 311.2 1.6738-01 131.8
3.0 9.639E+01 85.9 7.8650-01 304.8 3.2M4B+01 218.1  1.912 1.658 1.6578-01 311.2 1.6758-01 132.2
3.6 9.69K+01 85.9 1.231Be00 314.5  3.273K+01 218.8  1.911 1.658 1.6878-01 311.2 1.674E-01 132.9
3.8 9.639E+01 85.9 1.307K400 326.1 3.261RB+01 219.9  1.904 1.654 1.6620-01 311.2 1.668E-01 133.9
4.0 9.53SB+01 85.9 2.966E400 339.8 3.224B+01 221.4  1.880 1.642 1.6768-01 311.0 1.648K-01 135.5

9.6398+01 5.9 2.966R+00 330.8 3.224B401 220.4  1.380 1.642 1.676B-01 311.0 1.6438-01 135.5
9.6390401  85.9  4.709B+00 355.5 3.137Re01 223.6  1.822 1.811 1.7118-01 310.5 1.505B-01 137.7
9.6395+01 85.9 T.T420400 12,5 2.950%401 226.6  1.690 1.541 1.797R-01 309.4 1.510B-01 140.7
9.639E+01  85.9  1.3220401 297 2.589B+01 230.4  1.405 1.384 2.018E-01 306.6 1.3248-01 144.4
9.639E401  85.9  2.275K+01 45.4  1.908B+01 234.7  0.955 1.069 2.5548-01 301.4 9.7578-02 148.8
9.639E401  35.9  .678Bs01 8.2 7.356B+00 238.2  0.620 0.647 3.527B-01 298.7 3.7628-02 152.2
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1IE~I

b. step-like induction by short circuit current

Fig.3. Sheath current (A) versus the length (km)
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b. step-like induction by short circuit current

Fig.4. Sheath-to-earth voltage (V) versus the length (km)
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b. step-like induction by short circuit current

Fig.5. Resistance R, and reactance X, (f1/km) of the surface
impedance versus the length (km)
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Fig.6. Screening factor ky versus the length (km)



132 K. KAROLYI, GY. VARJU

3-
wsg ave
~8
&l
0,000 1,000 2,000 J,Icm o s}:co
a. phase of current
g a2
o |
L:J Ga0.1
We |
- - Ge
g
0,000 1,000 2,000 3,000 4,000 s;)oo
b. phase of voltage
3 co
N Qe
- Ge04
w3
~§
§
2,000 1,000 2000 3000 €000 5,000

c. phase of screening factor

Fig.7. Variation of phase angle versus the length (in the case of
step-like induction by short circuit current)
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Concerning the phase angles (Fig.7), in the case of the current
and screening factor they vary in a narrow range. The phase of
voltage shows a significant (about 180°) variation at the location
of voltage minimum when G=0.1 or 2. When G=10, the phase

of voltage has no importance due to the practically zero voltage
magnitude.

The presented examples were calculated (in PL/1) on the com-
puter R40 of the Computer Center of E6tvos Lorand University,
Budapest.
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