Annales Univ. Sci. Budapest., Sect. Comp. 10 (1989) 89-96

ON DOMAINS OF ATTRACTION OF EXTREME
VALUE DISTRIBUTIONS VIA GENERALIZED
CONCAVITY - CONVEXITY

JANOS C. FODOR

Computing Center, Eotvos Lordnd University
H-1502 Budapest 112, P.O.Box 157

1. Introduction

Consider a sequence of independent, identically distributed
random variables X,,X;, X; ... with common distribution func-
tion (d.f) F(z). For n > 1, let

Z, =maz(X,,X,,...,X,).

A d.f. F belongs to the domain of attraction of a nondegenerate
d.f. H, if there exist sequences of constants {a,,b, }2_, with b, >
0, such that

(1.1)

nl_l‘n; P(Z, < a, +b,z) = H(z)
holds at all continuity points of H. In the sequel the relation (1.1)
will be denoted by F € D(H). We eploy the notation
H, ,(z) = ezp(—z~"),z > 0,H, , (z) = exp(—(—z)"),z < 0 and
H, o(z) = exp(—e~*),z € R, where 4 is a positive parameter.
A d.f. F can belong only to the domain of attraction of one of
the three types H, ., H, ., and H; , (see e.g. [1]). Gnedenko gave
characterizations of domains of attraction of the three types in

[2]. De Haan presented a unified approach involving only the d.f.
F itself (see [3]).
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The aim of the present paper is to characterize the domains of
attraction of extreme value distributions in terms of the concavity-
convexity index of the tail of an appropriate d.f. G, or equiva-
lently: in terms of ultimately concavity (convexity) properties of
the function [1 — G(z)]*(¢q € R, ¢ # 0).

In section 2 we give the concepts of r-concave (r-convex),
ultimately r-concave (ultimately r-convex) functions and we in-
vestigate the main properties of these functions (from our point
of wiew). Moreover, we define concavity, convexity and concavity-
convexity indexes of a function g, denoted by cv(g), cz(g) and ¢(g),
respectively. In the case of twice differentiable g, we can give an
alternative definition of ¢(g).

This last result leads us (in Section 3) to the above-mentioned
characterizations being supported by the paper [3].

2. Generalized concave and convex functions

The notion of convexity and concavity undoubtedly plays a
dominant role in great many branches of mathematics. There exist
some different generalizations of these concepts. The definition
of r-concave (r-convex) functions is due to Martos (see [4]) and
generalizes the usual concavity (convexity) by letting the weighted
artithmetic mean of funcion values be replaced by a more general
mean.

Let u,v be positive real numbers, A € (0,1) and let r # 0 be
a real number. The A-weighted r-meand of u,v is defined by

(2.1)
M, " (u,v) = [Au" + (1 = A)v"]/".

Applying continuity argumentation, one can easily see that
M; (u,v) =utv'™?
M} (u,v) = maz(u,v),

M; = (u,v) = min(u,v).
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A positive real function g(x) defined on some interval (a,b) is
said to be an r-concave function on (a,b) , if for any pair z,,z, €
(a,b) and A € (0,1) we have the following inequality
(2.2)

9(Azy + (1 = A)z;) > M (g(21),9(22)),

where —00 < a < b < +o00.
Note that r-convex functions are defined in a similar way, with
the opposite sign inequality.
A simple characterization of r-concave (r-convex) functions can be
obtained by the familiar notion of ordinary concavity and convex-
ity:

a.) g(z) #s r-concave (r-convez) if and only if
(i) ¢ (z) #s concave (convez) vhen r > 0;
(ii) ¢ (z) is convez (concave) when r < 0;
(iii) log g(z) #s concave (convez) when r = 0.

b.) If g(z) ts r-concave (r-convez), then it is also g-concave
(g-convez) for every q < r(q > r).

In case of differentiable functions alternative definitions of
r-concave and r-convex functions can be given. Let g(x) be a
twice differentiable positive function on an open interval (a,b).
Denote by g'(z),g"(z) the first and second derivatives of g(x),
respectively. Then g(x) is r-concave on (a,b) if and only if the
inequality
(23)

(r - Dig ()] +g(z)g"(z) <0

holds for every z € (a, b).

We note that inequality (2.3) is reversed when r-convex functions
are characterized.

Assume that g(x) is a real, non-negative function on some
interval (a,b), where —oo < a < b < +00, and let
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w(g) = sup{z : g(z) > 0}.

g(x) is said to be an ultimately r-concave (ultimately r-convex)
function if for the given r € R there exists an z, such that z, <
w(g) and g(z) is r-concave (r-convex) on the interval (z,,w(g)).
Let us define the concavity and convexity indexes of g(z) by
(2.4)

cv(g) = sup {r € R : g(z) is ultimately r — concave}

and
(2.5)

cz(g) = inf {r € R : g(z) is ultimately r — convex},
respectively.

These terms are well-defined because of the part b.) of the above-
mentioned characterization.

If for a given g(z) we have the equality cv(g) = cz(g) then let the
concavity-convexity index (or briefly : cc-index) of g be ¢(g9) =
cv(g) = cz(g). The following result is fundamental from our point
of view.

Proposition. Assume that for a given positive function g(z) there
exists an £ < w(g) such that g is twice differentiable and g' (z) # 0

on the interval (z,w(g)). Then cv(g) = cz(g) = g if and only if the
following relation holds:

(2-6)
lim[y(z)]' —g-n

=-v|g(z)

Proof. Assume that ¢(g) = ¢. This means that for every ¢ >
0 g(z) is ultimately (¢—e)-concave and is ultimately (g+¢€)-convex.
It follows from the inequality (2.3) that we have
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(2.7
q—esl—MSq+e

[9(z)]?

on some interval (z(e),w(g)), whence we get the relation (2.6).
The converse is obvious. Thus the theorem is proved.

3. Domains of attraction results

Let F(x) be a d.f.. Assume that there exits an zr < w =
w(1 — F) such that

(3.1)

/ (1 — F(t)]dt < +oo.

In this case let us define the d.f.'s F,(z) and F,(z) by
(3.2)

Fy (2) = maz{0, / (1 - F(t))dt)

w

Fy (z) = maz{0, / (1 — F, (t))dt).

z

We note that (3.1) holds trivially when w < +o00. If the inte-
gral in (3.1) is not bounded above we can define a new d.f.F*(z)
by
(3.4)

1- F(z)
z3
De Haan proved in [3] that (3.1) is valid with F*(z) instead of
F(z). So in the case w = +o00 let F; and F; be defined by (3.2)

and (3.3), respectively, with F* instead of F.

F*(z)=1- ,z > 1.



94 JANOS C. FODOR

Now we are able to draw up our main results.
Theorem.

a.) F € D(H, ,) if and only w = oo and there ezists an r,
such that —1 < r; < 0 and the function [1 — F; (z)|" is ultimately
concave for r; < r < 0 and ultimately convez for r < r, or r > 0.
Moreover, v = —1/r; — 1.

b.) F € D(H; ) sf and only if w < oo and there ezists an r,
such that 0 < ry < 1/2 and the function [1 — F,(z)]" is ultimately

concave for 0 < r < r, and 1s ultimately convez for r < 0 or
r>r,.

Moreover, y =1/, —2.

¢.) F € D(H,,) if and only if the function [1 — F,(z)|" 1s
ultimately convez for everyr € R,r # 0.
Proof. De Haan proved that F € D(H, ,) iff w = oo and

[1 - F* ()][1 — F; (=)]

lim =d with 1<d<2
R T O
2-d .
and = 11 (see Theorem 12 in [3]).

It is easy to see by our Proposition that this is equivalent to
¢(l1 - F;) =1-d,i.e.,1 — F;(z) is ultimately r-concave for r <
ry, = 1 —d and ultimately s-convex for s > r,. The proof is
complete if we apply the caracterizations by ordinary concavity
(convexity).

b.) In the above-mentioned paper of de Haan [3] the Theorem 11
asserts that F € D(H;,,) +ffw < oo and

(3.5)

i L= F@I[L ~ 3 (2)]
ste  [1—F,(2)

=d with1/2<d<1
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and
2d -1

1-d’

and by the proposition, (3.5) is rue iff ¢(1 - F;) =1—-4d,0 <
1-d < 1/2,i.e.,1— F;(z) is ultimately r-concave for r < r, = 1—d
and ultimately s-convex for s > 0. One may now finish the proof
as in part a.).
c.) In [3] it was proved also that F € D(H, ) iff (3.5) holds with
d=1 (see Theorem 10 in [3]). This is equivalent to
¢(1—F;) = 0,1.e.,1— F;(z) is ultimately r-concave for every r <0
and ultimately s-convex for s > 0. Thus our theorem is proved.

’7:



96 JANOS C. FODOR
References

[1] Galambos J.: The Asymptotic Theory of Extreme Or-
der Statistics. John Wiley and Sons, New York, 1978.

[2] Gnedenko B.V.: Sur la distribution limite du terme
maximum d’une série aléatorie. Ann. of Math., 44
(1943), 423-453.

[3] de Haan L.: A form of regular variation and its appli-
cation to the domain of attraction of the double expo-
nential distribution. Z. Wahrscheinlichkeitstheorie und
Verw. Gebiete, 17(1971), 241-258.

[4] MartosB.: The Power of Nonlinear Programming

Methods. MTA Kozgazdasigtudomédnyi Intézetének
Kozleményei, No.20. (in Hungarian), Budapest, 1966.

Received: June 24, 1987



