Annales Univ. Sci. Budapest., Sect. Comp. 10 (1989) 67-82

FORMAL SEMANTICS OF ANNA PACKAGES
VALERIA NOVITZKA

Institute of Computer Science
Technical University
040 01 Kosice, B.Nemcovej 3
Czechoslovakia

Abstract. In this paper we define the formal semantics of Anna
package. It is shown that Ada construct package together with Anna
annotations provide a good tool for describing abstract date types by
algebraic specification methods. The semantic approach is based on the

concept of heterogeneous algebras using the principles of denotational
semantics.

1. Introduction

Anna /Annotated Ada/[1] is a language extension of Ada
with two formal comments that are the virtual Ada text and the
annotations. Anna has been designed to meet a perceived need
to augment Ada with precise machine-processable annotations so
that well established formal methods of specification and docu-
mentation can be applied to Ada programs.

Annotations should be well suited for different possible appli-
cations during the life cycle of a program. Such applications in-
clude specification of program parts during the requirement anal-
ysis and program design. Annotations provide us to specify ab-
stract data types by algebraic specification methods in the form
of Anna packages.

We suppose that there may be a support environment map-
ping Anna specifications into Ada implementations similar as in
CIP project [2]. We define the semantics of Anna packages as a

68 VALERIA NOVITZKA

mixture of denotational and predicative specifications using alge-
braic methods, and we can study the problem of consistency of
implementation and specification.

2. Algebraic specification of abstract data types

A signature X is a pair £ = (S5,0) where S is a set of sorts
and O is a set of function symbols f : s;x...x8, = 8,41, €S,
1 <t < n+1. A specification of abstract data type T is a pair
T = (X, E) where E is a set of Z-formulas /axioms/. If the axioms
are the equations, we say about equational algebraic specification
of abstract data types. [3]

A model for an algebraic specification T = (X, E), where
¥ = (S,0) is a signature, is a heterogeneous X-algebra A=(M,F),
such that M = (M,),c0, F = (F;);e0 and
1. every carrierset M, € M is associated with a sort s€ S
2. every function F, ¢F, F, : M, x...xM, — M, is associated

nt1
with a function symbol fe0, f:8,z...28, — Sp41.-

3. every axiom eeF is fulfilled after substituting every occurrence
of function symbol from O by the corresponding functions from
F and variables of sorts from S by the corresponding elements of
carriersets from M.

A signature ¥ = (S,0) is called hierarchical, if its subsigna-
ture X' = (5',0'), S' C S, 0' C 0 is designated to be primitive.
A X-algebra A=(M,F) is called hierarchical if its signature ¥ is
hierarchical. A specification of hierarchical abstract data type
T = (X, E) consists of
1. a hierarchical signature £ with a primitive subsignature £' and
2. a set of X-axioms E, where E' C E is a subset of X'-axioms

such that T" = (X', E') forms an abstract data type. We call T"
a primitive subtype of T.

The Ada construct package [4] together with Anna annota-
tions provide the tool for algebraic specification of abstract data
types. A package is provided in two parts: a package specification

FORMAL SEMANTICS OF ANNA PACKAGES 69

and a package body. The package specification consists of visible
part, where we can define a sort as a private type declaration, its
operations that are usable outside this package and axiomatic an-
notation defining the properties of operations on the private type.
The hierarchical concept of private type can be specified by use
clause. Hence the visible part of package specification contains
the specification of abstract data type, i.e. it defines sorts, op-
erations and axioms of the abstract data type. The visible part
must incorporate all the necessary requirements of the user of the
package. It must contain all these properties that the user will be
able rely on since they are guaranteed to hold in every implemen-
tation. On the other hand, the visible part of a package must be
loose enough so that the implement or still has freedom for design
decision in its implementation.

Example:

package RATIO_PACK is
use Boolean_Type, Integer_Type;
type RATIONAL is private;

function equal(x: RATIONAL; y: RATIONAL) return

Boolean;

function create (NUMERATOR: Integer; DENOMI-

NATOR: Integer) return RATIONAL;

function NUMERATOR (x: RATIONAL) return Integer;

function DENOMINATOR (x: RATIONAL) return

70 VALERIA NOVITZKA

Integer;
- -| axiom for all x: RATIONAL; y: RATIONAL; i: Integer;

- - j:Integer =

- -| equal (x,y) = (Integer-Type.equal (NUMERATOR (x),
- NUMERATOR (y)) and Integer_Type.equal
- DENOMINATOR (x), DENOMINATOR (y))),
- -| NUMERATOR (create (i,j)) = i,

- -| DENOMINATOR (create (i,j)) = j;

rivate

- - - - abstract implementation
end RATIO_PACK;

The private part of package specification contains the defini-
tion of the structure of the private type. Because the structure
of a private type is given by using other types we call the private
part of a package specification the abstract implementation of the
type. While the specification in the visible part is loose, i.e. it
allows more than one model /polymorphic/, the private part will
the implementator restrict to only one model /monomorphic/ up
to isomorphism.

The package body contains the function bodies of operations
on private type that was defined in the package specification. We
call a package body the implementation part of a package.

Such package difinitions allow firstly to specify an abstract

FORMAL SEMANTICS OF ANNA PACKAGES 71

data type by visible part of a package specification. Then we
can specify the structure of the type by the private part of this
package and then we can specify how to obtain the result values
of functions by function bodies in the package body.

3. Semantic concept

We based our semantic approach on the concept of hetero-
geneous algebras using the principles of denotational semantics
(5,6,7].

First we define the universe of semantic objects. A semantic
object can be a data object, a function, a carrierset or an algebra.
We denote by DatObj a set of all possible data objects. This set
contains a special object 1 that represents the results of nonter-
minating computations. We denote by CarSet a set of carriersets
associated with sorts. The elements of carriersets are data objects
and every carrierset contains the element L.

CarSet = {M : M C DatObjA L eM}

CarSet contains the special carrierset B that is associated
with the sort Boolean of truth values

B = {true, false, L}

We denote by Fnct a set of strict functions between carriersets

Fnct = {F : Fe(Myx...xM, = My 1]otrice A
AM;eCarSet N1 <1 <n+ l}

Let Sig be the set of all hierarchical signatures £. We denote
by Alg the set of all X-algebras over DatObj

72 VALERIA NOVITZKA

Alg = {A : AisL — algebra A EeSig}

These algebras are computation structures associated with
packages.

The universe of semantic objects is an union

SemObj = DatObj U CarSet U Fnct U Alg

and we assume that these sets are disjoint.

Every semantic object can be denoted by an identifier from
the set Ident. The identifiers correspond to the elements of sorts,
function symbols and package names. The set Ident contains two
special identifiers:result -that denotes a result of a function and
private - that denotes a private type.

We extend the definition of semantic objects and identifiers
with attributes that contain semantic information. First we intro-
duce category attribute cat ¢ CatAt that classifies to which of four
categories /data, sort, function symbol, package/ is the semantic
object associated and the identifier belongs. The set of category
attributes is

CatAt = {data, func,sort, pack}
We define the set of attributed identifiers as

Attld = Cat AtxIdent

For semantic objects we introduce the second, hierarchical
attribute that indicates a hierarchical structuring of semantic ob-
jects. Every semantic object is of form (v,cat,hat), where ve

FORMAL SEMANTICS OF ANNA PACKAGES 73

SemObj, cateCat At and hat is a hierarchical attribute explained
bellow.

The set of attributed data objects is the set

AttDatObj = {(d, data, s) : deDatObj A seIdent}

where s indicates the sort of the data item d.
The set of attributed carriersets is the set

AttCarSet = {(M ,sort,p) : MeCarSet A peIdent}

where the identifier p indicates either a package in which the
sort associated with M is defined or a sort such that M is a subset
of the carrierset associated with p.

The set of attributed functions is defined as

AttFnct = {(F, func,< 8y ...8,8,41 >):

FeFnct A s;eldent A1<i1<n+ 1}

where < s; ...8,8,,, > is the sequence of sorts such that F
is associated with function symbol f, f : s;X...XS, — Sp41.

To define the set of attributed algebras we have to modify
the definition of signature.

Definition:

A generalized hierarchical signature I is a sequence of at-
tributed sorts, function symbols and packages.

74 VALERIA NOVITZKA

The set of generalized hierarchical signatures is defined recursively

GSig = ({(s, sort,p) : s, peldent}U

{(f, fune,< 8y ...8,8,41 >) : 8;, feldentA
AM<i<n+1}U

{(p, pack,Z) : feGSig})*

Now we can define the set of attributed algebras as

AttAlg = {(A, pack,Z) : A is T — algebra A feGSig}

The set of attributed semantic objects is the union

AttSemObj = AttDatObj U AttCarSet U AttFnct U AttAlg

We extend the notion of environment defined in algebraic
specifications as follows:

Definition:
The environment ¢ is a total mapping

& : Attld — AttSemObj

defined by
1. for every (data, z)eAttld

é(data, z) = (d, data, s)

where deDatObj of sort s;

FORMAL SEMANTICS OF ANNA PACKAGES 75

2.for every (sort,s)eAttld

€(sort,s) = (M, sort, p)

where MeCarSet and s is defined in package p or s is a subsort
of sort p;

3. for every (func, f)eAttld

E(func, f) = (F, fun,< 8;...8,8,41 >)

where FeFnet and f is its associated function symbol f :
8$1X...XS8p —* Sp41;

4. for every (pack,p)eAttld

¢(pack,p) = (A, pack, L)

where A is a T-algebra.
The set of all environments is denoted by Env.

Definition:

Let £¢ Env be an environment, cateCatAt a category at-
tribute and hat a hierarchical attribute. If for zeldent, veSemObj

é(cat, z) = (v, cat, hat)

then we denote

v = Val(¢, cat, z)

hat = Atr(¢, cat, z)

76 VALERIA NOVITZKA

and say that the mapping Val returns the value of the iden-
tifier x in the environment ¢ and the mapping Atr returns its
hierarchical attribute.

4. Semantics of declarations

Every family of declarations specifies a hierarchical T-algebra
of some generalized hierarchical signature £eGSig. Semantically
we interpret every declaration as a predicate on an environment.
Some declarations /functions, packages/ consist of two parts: the
specification part and the implementation part /body/. We in-
troduce two semantic functions for declarations:

Dspec : declaration — Env — B

Dimpl : declaration — Env — B

The semantic function Dspec considers only specification
parts of declarations and the semantic function Dimp considers
both the specification and the implementation parts. Introducing
two semantic functions for declarations serves for formulating the
criterions for consistency of programs and can serve for verifica-
tion purposes.

To formulate the semantic equations for declarations we have
to introduce several auxiliary functions.

Let ¢ Env be an environment and (C, X) C Attld a subset
of attributed identifiers such that C C CatAt, X C Ident.
We define the function

Accord : EnvxP (Attld) — P(Env)

that for given environment éeEnv and for the given set of
attributed identifiers (C, X) C AttId returns the set of all envi-
ronments according with ¢ for all identifiers from (C,X).

FORMAL SEMANTICS OF ANNA PACKAGES 77

Formally
Accord(f, (C,X)) =
{f’eEnv : V(cat,x)e(C, X) =
£(cat,x) = ¢' (ca.t,x)}

The second auxiliary function Set

Set : GSig — P(Attld)

associates with given generalized signature the set of all its
attributed identifiers and is defined by

Set(¢) =P where € is the empty sequence

Set(< (s, sort,p) >) = {(sort,s)}

Sct(< (f,func,< 81 ...8,8p41 >) >) = {(func,f)}
Set(< (p, pack,f’) >) = {(pack,p)}

Set(T'oX') = Set(T) U Set(T)

The package names are declared twice: first by the specifica-

tion part and then by its implementation part /body/. To remove
the names declared twice we introduce the function

Rem : GSigx P (AttId) — GSig

that is defined as follows: let (C,X) C Attld be a subset
of attributed identifiers and YeGSig a generalized hierarchical
signature. Then

Rem(< (z,cat, hat) > o%, (C, X)) =

78 VALERIA NOVITZKA

€ if < (z,cat,hat) > oL = ¢
= Rem(%,(C, X)) if cat€ C,z€ X
< (z,cat,hat) > o Rem(X,(C, X)) otherwise

This function returns the generalized hierarchical signature
where every name is declared explicitly once.

For every declaration we introduce the auxiliary semantic
function

D : declaration — GSig

that associated with every sequence of declarations the gen-
eralized hierarchical signature consisting of the sequence of the
attributed sorts, function symbols and package names that are
globally declared.

5. Semantic equations for package declaration

We denote by
d a declaration
P a package name

The package declaration consists of two parts: package specifica-
tion and package body. The abstract syntax of both is

ps ::=package p is d end
|package p is d, privated;end
pb ::=package bodypis d end
An abstract data type specified by a package p is in the envi-

ronment {eEnv associted with a T-algebra A such that T is the

generalized hierarchical signature declared by the visible part and
(A, pack,T)e AttAlg.

FORMAL SEMANTICS OF ANNA PACKAGES 79

First we introduce the semantic equations for the auxiliary
semantic function D:

D[package p is d end]=< (p, pack,D[d]) >

D[package p is d, private d, end] =< (p,pack,D[dI]) >

D[package body p is dend| = ¢

The package specification defines the generalized hierarchical sig-
nature consisting of attributed package < (p, pack,D[d]) >. The
package bodies do not define a signature.

Let (¢ Env be an environment. The semantic equations for
the semantic function Dspec are as follows:

Dspec, [package p is d end] =

(Atr(¢,pack,p) = D[d])A
(Val(¢,pack,p) = A)A
Dspec,|d]

where A is the D[d]-algebra associated with p in the environ-
ment £.

Dspec,[package p is d, private d; end| =

(Atr(f,pack, p) = D[d,])/\
(Va,l(f,pack, p) = A)/\
Dspece|d, |

The declarations in the private part do not extend the gen-
eralized hierarchical signature D[d,].

80 VALERIA NOVITZKA

Dspec, [package body p is d end] = true

The package body does not contribute to the specification
part.

The semantic equations for the semantic function Dimpl are
as follows:

Dimpl,[package p is d end| =(Atr(£,pack,p) = D[d])A

(Va,l(f, pack,p) = A) A
Dimpl,[d]

Dimpl,[package p is d, private d; end] =
= (Atr(¢, pack,p) = Dld])A
(Vaz(e, pack,p) = A A)Dz'mpz€ [dy]A
(agl eAccord(€, Set(D[d;]) \ Set(D[d,])) :
Dimple, [dy))

Here we must take into account the declaration d, in the
private part. £, is the environment according with £ and all at-
tributed identifiers declared in d, but not in d,.

Dimpl,[packagebody p is d end| =
(361 eAccord(&,Set(D(d]) \ Atr(&,pack,p)) :
Dimpl,, [d])

FORMAL SEMANTICS OF ANNA PACKAGES 81

where £, is the environment according to ¢ and such identi-
fiers declared by d that differ from identifiers in signature

Atr (&, pack, p).

82

VALERIA NOVITZKA

[1]

[2]
[3]

[4]
[5]

[6]
[7]

References

Luckham, D.C.,et al: Anna a language for annotat-

ing Ada programs; Technical Report 84-248, Stanford

University,1984

Bauer, F.L.: The Miinich project CIP; LNCS 183,-
Springer-Verlag, 1985

Ehrig, H., et al: Fundamentals of algebraic specifica-
tion 1; EATCS Monographs on Theoretical Computer
Science; Springer-Verlag, 1985

The programming language Ada reference man-
ual; LNCS 155, Springer-Verlag,1983

Stoy, J.E.:Denotational Semantics: The Scott-Strachey
approach to programming language theory; MIT Press,
1977

Broy, M., et al: Semantics; Technical Report, Univer-
sity Passau, 1987

Tennent, R.D.: A practical guide to denotational se-

mantic definitions; Technical Report, University of Ox-
ford, 1978

Received: December 7, 1988.

