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Abstract : The concept of maximal triangle-free circular graphs
is introduced and their relation to sum-free bases for finite intervals of

integers is studied, leading to the construction of an infinite sequence
of (3, k)-Ramsey graphs if k > 61.

1. Introduction

Throughout, graphs are undirected, with no loops or mul-
tiple edges. The number of vertices will be denoted by n, the
degree of a vertex v by d(v), the distance between vertices u,v by
d(u,v). A set of vertices is independent (or stable) if the vertices
are pairwise non-adjacent. The maximum size of such a set in a
graph G is called the independence (or stability) number and will
be denoted by a (G). For a vertex v, N(v) will denote the set of
its neighbours. graph is triangle-free if it does not contain three
mutually adjacent vertices.

We shall use the symbol gcd(a,,a;,...) for the greatest com-
mon divisor of the integers a,,a,,.... [n] will denote the integer
part of n.

The Ramsey number R(3,k) is the smallest integer n such
that any graph with n vertices either contains a triangle K, or an
independent set of size k. The asymptotic bounds
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ck? ck?
log?k <E(3,k) < logk

are known since many years, the lower bound is due to Erdés [1]
and the upper bound to Ajtai, Komlés and Szemerédi [2] with
¢=100. This constant was improved to 2.4 by Griggs (3, 4]. A
graph is called a (8, k)-Ramsey graph if it contains neither a trian-
gle, nor a k — element independent set. Constructing such graphs
can lead to improve lower bounds for R(3, k).

2. Circular and maximal triangle-free circular graphs

Let 1 < j; < ... < Ji < [2] be integers. We define G =
G(n;J1,J2,---,Jx) as a simple undirected graph with n vertices
where two vertices are adjacent if and only if the difference of
their indices equals one of j;,J,,...,J5 (modulo n). Such graphs
are called circular. For example, G(5;1) is a circuit of length 5.

A maximal triangle-free circular graph (MTC) is a triangle-
free circular graph G with G + e containing triangles for any edge
e not belonging to G.

An infinite sequence Gs,G,,... of MTC’s can be obtained
if G5 is a circuit of length 5 and G,,, is obtained from G, by
associating a new vertex z' with each vertex z of G, and joining
it to all neighbours of z in G,; moreover, by adding a new vertex
y and joining it to the new vertices z', see [5].

One can easily prove the following statements:
(1). Circular graphs are regular.

(2). If G(n; 51,25 - -, Jx ) With k > 2 is a triangle-free circular
graph then its girth is 4.
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(3). Let k = gcd(n,j) and h =2 for a circular graph G(n, ).
Then the graph consists of k circuits of length h [7].

(4). I ged(n,j1,J2,--.,Jx) = 1for acircular graph G(n; j,, J2,
..+, Jx) then the graph is connected [7].

(5). A triangle-free graph G is maximal with respect to this
property if and only if the distance of any two vertices of G is at
most 2.

(6). If G is a maximal triangle-free graph and v is a vertex of
G with maximum degree A then N(v) is a maximal independent
set of G.

(7). If G is a MTC then N(v) is a maximal independent set
of G for every vertex v of G.

(8). A circular graph G(n;1,4,...,J) is triangle-free if and
only if

(). 5, + %, + %, # n for any three, not necessarily distinct
integers ]’!‘1 ,j}j ’ji; e {jlajZ’ A ’jk};

(ii). %, + %, # %, for any three integers 5, ,7%,,%, € {J1,J2,
..., Jx } (where j;, and 3, can be equal).

(The necessity of these conditions is obvious. For the suffi-
ciency suppose that the graph has a triangle T. Without loss of
generality we may suppose that the vertices of T contain the n**
vertex. Let the subscript of the other two vertices be h and k with
h < k. If k < [%] then the choice h = j;, and k = j;, leads to a
contradiction with (ii). Otherwise put h = 5, and k— h = 3, for
a contradiction with (i).)

(9). Let G(n;J1,72,--.,Jx) be a triangle-free circular graph,
let S = {J1,52,---,Jx}- Suppose that S is a base for the interval
[1,[%]] and that for any j € S even, there are some j;,,5, € S so

that 5, + %, = "2- or |5, — %, | = ’2- Then the graph is MTC.
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(The statement easily follows from statement (8). The condi-
tions are also necessary. For example, G(10;2,3) and G(10;1,4)
are MTC while G(10;2,5) is not.)

We associate a (2k + 1) X 2k matrix M, to each vertex v
of a circular graph G(n;j;,%,...,Jx) as follows. The first row
A, = (a} ;,a},,...,a},,) consists of the elements a} ; € N(v) in
circular order (starting with v + j5;, ending with v + (n — ;) and
increasing mod n). The elements of N(a] ;) in the same order are
arranged as column vectors b, ,b,,...,b,; for every 1 = 1,2, ..., 2k.
These vectors form a 2k x 2k block B, which is placed under A4, .

For example, if the vertices of the MTC graph G(65;7,10,11,
12,13,15,16) are numbered from 0 to 64 then M, is shown on the
next page.

The following statements are again straightforward:

(10). For any vertex v of a circular graph G(n; 1,2, -, %),
the matrix B, has the following properties:

(i). B, is symmetric;
(ii). b;; = 2ay; (mod n) - v;
(iii). b12k = b2 2k—1 = ... = box,1 = v;

(iV). b."j + bZk—j+l,2k—i+1 = 2” (mOd n) for every i,j =1, 2,
w5 2k.

(11). For the first vertex of G(n;Ji,J2,...,Jk), i.e. for that
with label 0,

(). Ao = (41,0252 0k = Jky-eeyn = 51 );

(ii). 7 = A;, and b],, = A._,,,,_, foreveryi=1,2,..,k;

(12). Let the vertices of the circular graph G(n;j,,7,..., )
be labeled from O to n-1. If there are subsets S, C N(0) and
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S, C N(k) where k € N(0) so that S = {N(0) — S,} U S; is also
an independent set then |S;| < |S,|, i.e. |S| < |N(0)|.

MAT A, 07...10...11...12...13...15...16...49...50...52...53...54...55...58

MAT B, 14...17...18...19...20...23...23...56...57...59...60...61...63...00
17..
18.
19..
20..
22..
23.
56.
57.
59...
60..
61..
62..

00..

Let S be a set of integers.

3.
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MAT M,
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Sum-free bases and MTC graphs

.03

.04

.06

.06

.08

.09

.42

.43

45

46

47

.48

.61

S+ S and S — S denote the
sets of integers arising as sums, or differences, respectively, of two
elements of S. S is called sum-free if SN(S+S) = SN(S-S) = ¢.

A subset S of {1,2,...,n} is called a base if SU(S+S)U(S—
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S) = {1,2,...,n}. The minimum cardinality ¢, of such a base
was proved to be ¢, < v/3.6y/n, see [8]; this was later improved

to be ¢, < 1/3.5y/n + o(\/n), see [9].

The constructions in [8] and [9] are not suitable for our pur-
poses since these bases are not sum-free. In this section we con-
struct a sum-free base (with a somewhat larger cardinality).

Theorem 1: Let t > 4 and n = 10t + 19t + 3. The subset
S C [1,2,...,n] of integers be the union of the following seven
arithmetic progressions:

Lay =2t4+1,a, =3t+2, .., as, = 3t? + 4t; here the
difference of the consecutive terms is d, =t + 1.

II. B, = 3t2+4t+2, 8, = 3t>+4t+3,... ,B,_, = 3t2+5t—1;
d2 = 1.

III. v, =3t2 +5t+1, v, =32 +5t+2, .., = 3t2 + 6t;
d3:1.

IV. 6, =3t + 6t + 2.

V.e, =6t2+12t+3, ¢, = 6t2+13t+3, ... , €42 = Tt2+13t+3;
d5 =t.

VL. n, = 6t2+13t+4,n, = 6t2+14t+5, ... ,n,_, = Tt2+9t—1;
de = t + 1.

VIL. A, =72 + 11t + 1.

Then
(1). S has cardinality 7t — 2;

(2). SU(S+S)U(S—S) covers every integer between 1 and
n except Tt? + 10t and 7t% + 12t + 2;

(3). S is sum-free;
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(4). a + b+ c # 2n for any a,b,c € S.

The first statement is obvious. (2) can be verified by the
following sequence of statements:

o

. 1 and 2 can be covered easily.
{v—-8;}2[3,t+1].

{a}u{v—a;}U{é —a;} D[t+2,3t* +4t+1].
{8:} 2 [3t® + 4t + 2,3t + 5t — 1.

ATl o B

. a; +as,_,; = 3t? + 5t.

{7} 2 [3t* + 5t + 1,3t + 6t].
a; + as, = 3t2 + 6t + 1.

6, = 3t + 6t + 2.

© ® = °

{& —v;} D [3t% + 6t + 3,4t% + 8t + 2].

10. {&}U{e; —a; Yu{n:}u{a;+e,; } D [4t>+8t+3, Tt +10t+3],
except Tt + 10t.

11. {04 + €;} D [Tt + 10t + 4,Tt* + 11¢).
12. A, =Tt + 11t + 1.
13. €t+2 —Qa; = 7t2 + llt + 2.

14. {&}U{os +€} D [Tt% + 11t + 3,9t? + 18t + 3], except
T2 + 12t + 2.

15. {7 + €} D [9t* + 18t + 3,10t> + 19¢ + 3].

(In order to see item no. 10, observe that if t = 4, {¢} U
{e: — a;} D [4t® + 8t + 3,Tt? + 10t + 3] except 7t* + 10t and that
in case of t > 5 we also need {a; +¢;},1,j =1,2, ..., t-3, for the
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numbers of form [7t? + (10— 1)t +3+5],i =1, 2, ... , t-4; j =1, 2,
... » (t-4)+1-i, and then only 7t* + 10t and the 7,’s are left. The
other items are obvious.)

The proofs of (3) and (4) require a large number of technical
steps. The interested reader is referred to [12]; details in English
are available from the author.

Using the above sets S = {j;,7,.--,Jx} We obtain an infi-
nite sequence of MTC graphs G(n;Ji,J2,---,Jx), i.e. an infinite
sequence of (3,k) — Ramsey graphs.

4. Computational results and some remarks

Using some ideas of Balas and Chang [10] we developed a
FORTRAN program for finding a maximum independent set
in a circular graph, and determined the first eight MTC graphs
of the above sequence (for t =4, 5, 6, 7, 8, 9, 10, and 11). The
main parameters of these graphs are as follows:

1 2O N oceeeeeeennns A ... Q ocereeeenennns
4 ... 478 ........... 52 cceuneeee. 60 ............
5 e 696 ........... 66 .......... 82 cirrrreene
6 .cunnnenn. 954 ........... 80 .......... 102 ..........
Toeeienenn 1252 .......... 94 ... 160 ..........
8 oo 1590 ......... 108 ......... 187 ..........
9 .eeeeee. 1968 ......... 122 ......... 255 .ereeeeee
10 ......... 2386 ......... 136 ......... 239 ..........
11 ......... 2844 ......... 150 ......... 300 ..........

The explicit lists of S and a maximum independent set for
each graph can be found in [12] and are available from the author.



A COMPUTER-ASSISTED NUMBER... 43

Some open problems arise from these considerations. For ex-
ample, we conjecture that 2 is increasing if ¢ is odd and decreasing
if t is even for the above sequence of MTC graphs.
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