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ON A GENERAL STACKELBERG-TYPE
LEADER-FOLLOWER OLIGOPOLY
MODEL
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Abstract. This paper introduces a new leader-follow type N-per-
sons game, in which the players are divided into K groups. It is assumed
that group k follows group kK — 1 for kK > 1, and group 1 follows group
K. The players belonging to a group form equilibrium among each other
under the newest informations available. The formulation of the model

is given and in the linear case stability conditions are derived.
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1. Introduction

The stability of the Cournot-Nash equilibrium has been stud-
ied by many authors under different assumptions on the behavior
of the firms. The classical oligopoly game was first discussed under
the expectations a la Cournot by Theocharis (1960). His result
has been extended to multiproduct oligopoly by Szidarovszky and
Okuguchi (1986). Models with adaptive expectation have been an-
alyzed by Fisher (1961) and Okuguchi (1970, 1976). These classi-
cal results given for the classical ologopoly game have been gen-
eralized to multiproduct models by Okuguchi and Szidarovszky
(1987a). The stability of the Stackelberg duopoly and that of
a Stackelberg-type oligopoly have been analyzed by Hathaway,
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Howroyd and Rickard (1979), and by Okuguchi (1979), respec-
tively, and a multiple leader Stackelberg model has been intro-
duced and analyzed by Sherali (1984). A sequential adjustment
process has been introduced by Gobay and Moulin (1980), and
its generalization to multiproduct oligopoly has been presented in
Okuguchi and Szidarovszky (1987b).

In this paper a generalized version of this sequential adjust-
ment process will be introduced. We formulate the dynamic pro-
cess as follows: Assume that the players are divided into disjoint
groups G;,G3,...,Gg. At time t = 0, each player selects and
initial strategy, and for each time t > 0 the following sequential
adjustment process is performed. First, group G, forms equilib-
rium under the latest information g:_:.'_ V(5 € G,k # 1) available.
Then, group G, forms equilibrium under fixed strategies gﬁ.") (€
G,) and gﬁ.'_l)(j € Gx,k > 2), and so on. Finally group Gg
forms equilibrium with fixed strategies gﬁ.t) ( € Gy k< K—-1).
If each group contains only one player, then this process coin-
cides with the original sequential adjustment process of Gabay
and Moulin (1980). In the further special case where K = 2 this
model reduces to the leader-follower duopoly model of Stackelberg
(1934).

The development of the paper is the following. First, the

mathematical model will be formulated. Then, stability condi-

tions will be presented on the basis of the stability theory of linear
difference equations.

2. The Mathematical Formulation of the Model

Assume that in N-person game X;(f = 1,2,..., N) is the set
of strategies of player ¢, and ¢; is his payoff function. Then this
game is denoted by I' = {N, X,,..., Xy ,¢1,...,0x }.

Assume furthermore that the players are divided into disjoint
groups G,,G,,...,Gk, such that G, NG, = ¢ if k # ¢, and
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GiUG,; U...UGkg ={1,2,...,N}. Let :cfo) denote the strategy
of player (1 < ¢+ < N) at t = 0. Each time period ¢ > 0 and
k(1 < k < K) an equilibrium is formed by the players of group G,
with fixed values of z; = ! (1 € G,,1 < k) and z, = 2" V(i €
G1,1 > k). Assume the uniqueness of this equilibrium and denote
it by

2®) = BR) () g1 glkn)e=1) L p(K)(e=1))

(1)

where

E(l) = (Ej)J'EGI’

Then z(*)(*) = z(¥) and therefore this general sequential adjust-

ment process can be described by the Gauss-Seidel type (see Szi-
darovszky and Yakowitz, 1978) iteration

WO = B (D0 gk gern)le=1)  pK)(e=1),

(k=1,...,K) 2)

Definition. The Nash equilibrium u* = (z(¥)*,...,z(¥)*) is
said to be stable under the above general sequential adjustment
process if starting from arbitrary initial strategies :z:fo) 1<i<
N), the process (2) converges to z*.

For k = 1,2,...,K define X*) = x,¢¢, X, and assume that
m,, is the dimension of X(*). Let || - ||, denote a vector norm in
R™* k=1,2,...,K.

Assume that

a) All sets X;(1 < ¢ < N) are closed in R"';

b) There exist nonnegative real number a,,(k,l = 1,..., K;
| # k) such that for all k,
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and for arbitrary z(9),y(%) € X4,

| E® (2, gk glk+1) | gK))_

—E(k)(g(l),...,y(k_l),y(k+1),...,g(x)) ”k

K
< D a2 -y .. (4)

I=1,l#k

The following theorem is well known. See Szidarovszky and
Yakowitz (1978).

Theorem 1. Under assumption a) and b) the Nash-equilibrivm
is stable under the dynamic process (2).

Since the condition of the theorem are only seldom satisfied,
this result does not have a broad application in economics. More
practical condition can be obtained for special games, when map-
pings e(*) can be determined in closed form, and they have special
structures. In the next section of this paper such a special case
will be introduced and investigated.

3. Stability Conditions for a Linear Multi-Product
Oligopoly Model

The classical oligopoly game has been introduced by Cournot
(1838), and his model has been generalized and analyzed by many
authors. Okuguchi (1976) and Friedman (1979, 1981, 1986) give
a survey of related works. The multiproduct oligopoly game was
introduced by Selten (1970) and Szidarovszky (1978) for quantity
strategies and by Eichhorn (1971a, b) for price strategies. The
model of Szidarovszky (1978) will be now examined.
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Assume a market with N firms and assume also that each
of them produces M kinds of products. If zim)(l <k<N,1<
k < M) denotes the production level of firm k of product m,
then the output of firm k is characterized by an output vector
T, = (zil),...,zf‘“)). This vector z, is considered to be the
strategy of firm (player) k. Let the production cost of firm k be
denoted by Cj(z,), and assume that the unit price P,, of product
m depends on the total output vector

N
§:(ZI£1),...,
k=1 k

of the industry. Using these notations the payoff function (or
profit) of firm k can be formulated as

N
)
1

¢ (21,- .-, 2y) = i p(s) — Ci(z,), (5)

where p = (p,..., Py )7 . The following assumption are made:

(A) The feasible output set X, (or set of strategies) of firm
k(1 < k < N) is a closed, convex, bounded set in R™ such that
z, € Xi and 0 <t, <z, implies that ¢, € X,;

(B) For all s,

p(s) = As + b, (6)

where A and ) are constant matrix and vector, respectively; fur-
thermore matrix A + éT is negative definite;
(C) For all k,

Ci(z,) =§:§* + Ck, (7)

where b, > 0 is a constant vector, and ¢, is a scalar.

It is known (Szidarovszky and Okuguchi, 1987), that under
conditions (A), (B) and (C) there exists at least one equilibrium
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point, which is called the Cournot-Nash equilibrium of the multi-
product oligopoly game.

Under the above assumption at each time subperiod t(k),
each firm i from group G, (k = 1,...,K) maximizes his profit
with fixed output vector z; = gi.‘), ifjeG(t<kort=k
with j # 1) and with z; = 2" "), if j € G,(1 > k). Assuming
that the resulted output of firm i in the equilibrium is an interior
point of X;, the first order optimality conditions imply that for
all{(1 <+ < N),

(é+é7‘)§‘(e)+é{z Z £§:)+ E g:_(.')+z Z zﬁ-'_l)}+

<k jEG, JEG ,I#14 >k JjEG,
+b—b, =0. (v € Gy)
These equalities are equivalent to the relations

gkkz(k)(t) + Egug(t)(t) + ZH (O (t-1) +a, =0

<k >k
(k=1,2,...,K) (8)
where for all £,z(!) = (z,);cq,,, is a constant vector,
A+4A" A 4
A A+A 4
=kk = . ) (9)
4 4 A+ AT
and
A ... A
H =1: : (Vk,1) (10)

S
[ -
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Note that the types of matrices H,  and H_ are (| Gy | -M)x
(| Gx | ‘M) and (| G« | -M) X (| G, | -M), respectively, where
for all k,| G, | denotes the number of firms from group G,.

Our main result is the following

Theorem 2. Assume that A = A", and conditions (A), (B)
and (C) hold. Then the equilibrium is stable under the dynamic
process (8).

Proof. The proof of the theorem consists of severel stages.
a) First we prove that matrix

g_u _ﬁ_m =K
H= =1 =22 7' ==k (11)
gKl gxz o gxx

is negative definite. Relations (9) and (10) imply that H is the
Kronecker product of matrices A and 1+ I, where 1 is the matrix,
the elements of which are all equal to unity. Since A is symmet-
ric, H is symmetric, and its eigenvalues can be obtained as the
products of the eigenvalues of A and 1+ I. Since A + _éT =24is
negative definite, the eigenvalues of A are all negative. One may
easily verify that the eigenvalues of _l__+ I are equal either to 1 or
N + 1. Hence all eigenvalues of H are negative.

b) Introduce next the notations

(S
I
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0
L = g21 2
gxl gxz gx.xq (=)
and
(2 gu glK \
o ... H
U= , (12)
0 H,
0
\ 0o
then equation(8) implies that
(k) () — _ (e)(¢) _ -1 (e)(t-1)
z = gkkguz EgkkacE +.[_ik,
t<k e>k

where 3 is a constant vector. By using notation (12) we can
rewrite thls equation as

g(t) — _(£+£—1£)—1(£—1g)£(¢—1) +év

where 8 is a constant vector, and z(*) = (:c(")(‘)) _,- We shall
next prove that the eigenvalues of matrix

Q=-(I+E'L'E'L

are all inside the unit disk of the complex plane, which implies
the assertion of the theorem.
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Simple calculation shows that @ can be rewritten as

Q=—(E+L)'U

Consider now the eigenvalue problem of matrix @,

—(E+ L) '"Uu=Iu

ey pr— =

that is,

~Uu = A(E + L)u. (13)

P premultiplying both sides by u* (which is the conjugate trans-
posed of u) we get

—2; +1z; = Ma+ 2z, +12;), (14)

where

a=u"FEu,z +12, =u" Lu,

furthermore with overbar denoting complex conjugate,

!‘gy_': !*éT!: (wUu) = 2, + 12, = 2, — 12,.

From (14) we conclude that

A= —atin (15)
a+ 2 +12,

From the following argument it will also follow that the denomi-
nator differs from zero. We shall next prove that

| =2y +iz |<|a+2z +1z|.
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This inequality is equivalent to the relation

zi + 23 < (a+z) + 2,

that is

0< a®+2az = (a+2z)a. (16)

Hence we see that (16) implies the assertion. To prove that (16)
holds consider the following inequalities:

0>w Hu=u (L+U+Eu=
=z +tiz+2 —1z, ta=a+2z, (17)
0>y Eu=a. (18)

The first one is a simple consequence of the definition of a, 2, and
2;. The second inequality is implied by the fact that all diagonal
blocks of H are necessarily negative definite. Thus (16) holds,
which completes the proof.

4. A Generalized Process

In this section we shall generalize the process of the previous
section.

Process (2) is the special case of the following more general
iteration scheme. Assume that at each time subperiod t(k), firms
of group k determine their equilibrium

gME® = B0 (gO) | k-0 ghr1)e=1) ) e-1),
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but they select vector

(K)(8) — (k) (t-1) (K)E(8) _ o (k)(t=1)
MM = g +D, (z z )- (19)

Note that this process is a block variant of the successive overre-
laxation (SOR) method for solving linear equation

Hz+a=0,

where a = (a,)F_,, and H is defined in (11). This method is an-
alyzed in great details by Ortega and Rheinboldt (1970). Matrix
D, can be considered as the speed of adjustment in z(*), In this
paper we do not assume that matrices D are diagonal.

We shall next prove a generallzatlon of Theorem 2.

Theorem 3. Assume that A = A, and condition (A),(B) and
(C) hold, furthermore matrices

DTH +Hd.,.D, DTH D

—%k —kk —kk—k —k —kk—k

are negative definite for all k. Then the equilibrium is stable under
the dynamic process (19).

Proof. From the proof of Theorem 2 we know that matrix H
is negative definite. Simple calculations show that process (19)
can be rewritten as

) = (I+DE'L)"'(I-2-DRE'U)z""V +1,
where v is a constant vector, and D = diag (D cee ,Qx). The

matrix of coefficients of this difference equation can be written in
the form

~(L+EDD) (L~

IS

DE'U) =
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=(EA+L) ' (EBA-E-

I

)

where A = 2—1. We shall verify again that all eigenvalues of
Q are inside the unit disk of the complex plane. To prove this
=1

assertion consider the eigenvalue problem of matrix @ , which has
=1
th form:

(EA-E-U)u=MEA+ L

By premultiplying both sides by u* we obtain the equation

w; +£u)2—a—zl +122=A(w1 +iu)2 +21 +£zg),

where

a=u"Fu,w, +tw, =u" FAu,z +12, =u’ Lu,

which implies that

w, +tw;, —a—2, +12

A= : -
w; +1wy + 2, +12

(20)

We shall finally verify that

|wy +iw, —a— 2 +1i2; |<|wy +iw, + 2, +12; |,

which is equivalent to relation

(Wi —a—2)" + (w; +2)° < (w;, +2)° + (w +2)°.
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This can be simplified as
(a—2w,)(a+22) <0. (21)
Since H is negative definite,

>!‘(£+L_+Q)l=a+zl +i22 +z1 _izﬁ ::a+2z1’

furthermore

2w, —a=w, +iw; +w;, —tw; —a=1u"( A+éT

Ity
!
&
&
I

— v*(D"E + ED - D" ED)v,

where v = = D" lu. Since matrices D and E are both block di-
agonal, the same is true for DT E+ED - DT ED with diagonal
block DTH +H D-— DTH Qk Thus the conditions of the

=g kg | =kk= k ==k k
theorem imply that 2w, —a < 0. Thus (21) holds, which complete

the proof of the theorem.

Remark 1. Theorem 1 can be obtained as a special case by
selecting % = I for all k.

Remark 2. Consider the special case when 2& = wy I, where
w; is a constant number for all k. Then

D'H, D -D'H D = (2w, - wl)H,,.

=k =kk=k =k =kk=k

Since H . is negative definite, this matrix is negative definite if
and only if 0 < w, < 2. This is the usual condition for the
convergenc of the scalar SOR method.

Remark 3. If for all k,| G |= 1, then the sequential adjust-
ment process discussed in Okuguchi and Szidarovszky (1987b) is
obtained as a special case. Hence the results of this paper gener-
alize the theorems of this earlier paper.
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