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ON SYSTEMS WITH BULK ARRIVAL AND
GROUP SERVICE II.

L. LAKATOS

1. In [1] we investigated a queueing system with bulk ar-
rival and group services described by means of an inhomogeneous
Markov chain which can be used to determine the characteristics
of operating systems. In the present paper we investigate similar
problem in case when the local characteristics do not depend on
time, we get an expression for the generating function of transi-
tion probabilites and derive the conditions of existence of ergodic
distribution. The expression obtained for the generating function
contains certain probabilities from the desired distribution, they
can be determined as the solution of a system of linear equations.
To prove the solvability of this system we use the Vandermonde
determinant and its modification. Since this modification, as we
know, does not appear in the literature we give the method of its
calculus.

2. Formulate the corresponding problem of queueing theory.
Let £(t), t > 0 be a homogeneus Markov chain with state space
{0,1,...} and transition probabilites for A /A — 0/:

P{k2ok—c+r1} =6, +a. A +o0(D),

(1) P{k-25r} = &, + b, A + o(D),
t=0,1,...,c—1.
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Here a. <0, b; <0; a, /r #0/, b;, /1 # r/ are nonnegative and
the relations

(2) Y a =0, b, =0,i=0,1,...,c—1
r=0 r=0

hold. £(t) may be interpreted as the number of costumers in a
queueing system which is functioning by the following way:

1. if £(t) = k > c then for A with probability a, A+o(A)/ r =
0,1,...,¢—1 /is completed the service of group consisting of ¢ —r
requests, with probability 1 + a.A + o(A) in the system there
are not changes, and finally with probability a,A + o(A) / r =
¢+ 1,c+2,... / a group consisting of r — ¢ requests enters the
system;

2. if §(t) =+ /1 < i < ¢— 1/ then for A with probability
b;; A + o(A) /r = 0,1,...,¢ — 1/ is completed the service of a
group consisting of 7 —r reguests, with probability 1+ b;; A +0(A)
in the system there are no changes, and finally with probability
b;» A +0(A) a group consisting of r — 1 requests enters the system.
In case ¢+ = 0 we have only the last two possibilities.

3. We derive the direct system of Kolomogorov differential
equations for the transition probabilities Py (t). According to (1)

Py(t+ Q) = cz—:lpu(t)[&k + bix & + o( D))+

1=0
k+c
+ 3 P ()b + aro i+ 0(D))],
from which
dP,.(t) & kte
(3) ‘%() = IJ”’ (t)b"k + Z P"'(t)ak—r+c,

= r=c¢

r=0
P‘k(O) —_-6”‘, kZO/l ZOﬁxed/.
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Introduce the generating functions and Laplace transforms

o0

1 oo
.P,(t,@ Z ”,(t , a(@)z—e—cZaka,
k=0

1 oo
b(@)——é—z ©*, i=0,1,...,c—1,

B (s) = / e * P (t)dt,

0

(4)

Bi(s,0) = /e““P,(t,G))dt (0< 0] <1,8>0).

0

Using (3) and (4) we obtain

aPR(t,0) — ;
— = a(®)P(t,0) + E-Ph (t)er[b:(8) — a(O©)],

i=0
or

c—1

[s — a(0)] = P(5,0) = ©' + ) P(s)0'[6:(®) ~ a(O)].

1=0

For each s > Of’, (s, ©) is bounded in the circle |®] < 1. So to find
the unknown P;(s) it is natural to use the roots of the equation

(6) s—a(@) =0

in the circle |®| < 1, according to Rouché’s theorem their number
is equal to ¢. Denote them by A;(s),A;(s),...,A.(s). If they all
are simple substituting them into (5) we obtain a system of linear
equations
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3 Bl (9ls — B0 (9] = X9,

1=12,...,¢

It is necessary to show that the determinant of (7) is different from
zero. Since the investigated chain is regular, it is uniquely deter-
mined by its local characteristics. So there exist such Py (s),. ..,
P, . (s) which satisfy (7), i.e. the system of equations is consis-
tent for any initial state [ > 0. Assume that one of equations (7)
is the linear combination of others, i.e. there exist such constants
A;/i =1,...,¢/ not all equal to zero, multiplying by which the
elements of any column and summing them up we get zero. Be-
cause of the consistensy of the system the same assertion is valid
for the free members for any [ > 0.

Let I take on successivily the values k, k+1,...,k+c—1. Then

to determinate the constans A; we obtain the following system of
homogeneous linear equations

MA + XA +...+ XA =0

®) Mt A A5 TIA, + .+ XA =0

Mol A 4 MY Ay b+ AETTIA =0

whose determinant, after taking A¥ A% ... A¥ out, will be the well-
know Vandermonde determinante, so it is different from zero. So
(8) has the unique solution 4; = 0, from which follows that the
determinant of (7) is different from zero.
Now let (6) have n different roots with multiplicities r,,
T2,...,7, correspondingly, ) r; = c. In this case we use the fact if
i=1

a is the root of equations f'(z) = 0 with multiplicity r—1,..., and
finally it is the simple root of equation f("~!)(z) = 0. So in the
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system of equations determining P; (s) to each different root will
correspond r;/t = 1,2,...,n/ equations, which we obtain from
(5) by differentiation 0,1,...,r; — 1 times and substitution © =
A (s). In this case using the lemma concerning the modification of
the Vandermonde determinant /see later/ one can make the same
conclusion as in case of simple roots. We proved

Theorem 1.

©' + 372, Pi(s)€%[b:(©) — a(0)]
s—a(®) ’

where 13,0(3),15,1(3),...,13,'0_1(3) in case of simple roots of (6)
are determined by the system of equations (7), in case of roots
with multiplicities by a system of equations obtained from (5) by
differentation 0,1,...,r;, — 1 times by © and substitution © =
A, (s), where r; is the multiplicity of th j-th root.

4.Determine the ergodic distribution for the described sys-

tem. It is well-known that for a chain with communicating states
the limits

(9) 131(3’ 9) =

exist and do not depend on the initial state {. We find the condi-
tions necessary and sufficient for the exist of the ergonic distribu-
tion.

According to [2] the necessary condition of existence of the
ergodic distribution for bounded one-dimensional random walk
is the difference from zero of the mean value of one step and
its direction to the side of bound. For our system it means the
fulfillment of the condition a’(1) < 0, what, according to Zyukov’s
results [2] implies the fact the root of (6) with maximal absolute
value in the unit circle A, (s), which obligatory simple, tends to
A1 = 1 as s — 0. Multiplying the both sides of (9) by s, as s = 0

c—1

=§:pk 2[1 ]9’P.,0<G)<1
k=0
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Taking the limit as ©® — 1 we obtain

Ju- g

froom which follows b}(1) < +oo0.

We mention that to prove th sufficiency of the above condi-
tions it is enough to consider the imbedded chain. Under these
conditions the sufficiency follows from theorem [3]: Let {£,,n >
0} be homogeneus irreducible Markov chain. Assume that exits a
nonnegative function f(t), ¢+ > 0 with the following properties:

1. M(f(€ns1)|€n = i) < 400, >0,
2. M(f(€n+1)|€n=i)Sf(i)_e’ t>N,

where € > 0, N > 0 are fixed numbers. In this case all the states

of the chain are ergodic. For our system let N = ¢ and f(¢) = 1.
Then

bo, bo2 bos b:)(l)
1 +2 +3 +...= —< 00
—boo —boo —boo —boo
bio b, bs b (1)
0 +2 + 3 +...=———4+1< >
_bu —by, "bu —bu
bc— bc— b’ ].
0 LI, | L1 +...=——°“—‘—(——)—+c1<oo
“Uec—-1,c-1 _bc—l,c—l _bc—l,c—l
‘(1
an -}-la1 —i—2(12 +...=m+c<c—e
— Qe —a, —a, —a.
'
1
1-2 4% +...=9—u+c+1<c+1—e
—a. —a. —a.

which because of a’(1) < 0 and bj(1) < 00 /t =0,1,...,¢ — 1/,
implies the fullfillment of conditions of the theorem.
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Let us denote by D(s) the determinant of the system of equa-
tions to obtain the unknown P;(s) /i = 0,1,...,¢ — 1/ /in case
of simple roots it coincides with the determinant of (7). in case
of multiple roots the elements of certain rows are replaced by the
derivates of the corresponding elements of the previous accord-
ing to the multiplicity of A;(s) /. Furthermore, let D;;(s) denote
the determinant obtained from D(s) replacing the ¢ + 1-st column
/i=0,1,...,¢—1 / by the vector

(10) {X (s), Xoreeer s (s) ¥

in case of simple roots /T means the operation of transposition/,
and by replacement with the vector got from (10) by means of the
corresponding deifferentiation in case of multiple roots. In this
case it is valid the following

Theorem 2. The chain £(t), t > 0 is ergodic if and only if 1.
all the states are communicating; 2. a'(1) < 0; 8. bj(1) < +oo0/i =

0,1,...,¢—1/. The generating function of ergodic distribution has
the form

P(©) = CZ[ b (e)]e'

+=0

where

_ iy $Du(s)
Fo=lm =50

5.We are going to consider a modification of the well-known
Vandermonde determinant / only the elements of the first row
have the power m /. Let be given a sequence of integers r;,...,r,,
Y 7. = c. The first column of the determinant we take from the
k=1
original Vandermonde determinant, the second column is replaced
by the first derivates of the elements of the first column, the third
column by the second derivates, ..., and, finally the r,-th column
by the r; —1-th derivates. The r; +1-st column is taken again from
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the Vandermonde determinant and an analogous replacement is
made /only one uses r; instead of r; /. This procedure is realized
n times. We prove the

Lemma.
(11)
zp mzp ! m(m—1)zr-2 .. zr
zrt! (m+1)zm (m+1)mzp-* ... grt?
TPt (m+2)zr+! (m+2)(m—-1)zr ... zm+?2
Pt (m+z—1)zgmte-? co. gmtestd
n rg—1 n
=TI II=z II -2y,
k=1 1=0 k=1 1<i<i<n

where n is the number of different elements z,, 1 < k < n,r;

is the number of columns containing z,, ) r. =e¢.
k=1
Proof. (11) will be considered as the function of arguments
Z;,...,Z,. Consider columns containing a fixed variable z; and
take outside the sign of the determinant 0!z]* from the first col-
umn, 1!z ~* from the second one,. .. ,and finally (r, — 1)z =" *!
from the r,-th one. Using the same procedure for all n variables

we obtain the factor
n rg—1 n e (rp—1)
(12) I IIe ] A
k=1 I=0 k=1

and the determinant to be computed will consist of stripes of the
form

(13)

- m-—1 m -2 m-—rg+1 -
1 cr cr e Cponet
m m—1 m-—=rg
Ty C’m+1.’ck Cm+1$k o Cm+1 +3-Tk
2 m+1,..2 m 2 m—r 2
z; chilz; Cr 2% . CRITI
c—1 m+c—2,.c-1 m+c—3.c—-1 m+c—rg c—1
Lz, Criciiiz; Criciliz cen Co bzt
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Now subtract the first column from the second, the new second
column from the third one,...,and at last the r, — 1-st from the
ri.-th. Executing this procedure m times using the equalities

cr = C’,',‘_‘l1 and C*¥ = C*_, + C*Z!1, taking out from the second

column z,. from th r,-th one z[*~* (13) takes on the form
1 0 0 ces 0 ]
T C? 0 e 0
(14) I: Czl Ty Cg e 0
Lz;~! Ctizim? Ceoizgt® ... CiIprz e
r.('t—l)

(12) will be multiplied by [];_, z, *  and takes on the

form
n rg—1

1T o [T =

k=1 I=0

We show that the value of the detereminant composed from stripes
of form (14) depends only on the difference of the arguments. Let
a be an arbitrary number and z any of z,,...,z,.Consider the
n + 1-st row. In the first column one finds in this place z". We
add to this row the first one multipled by C2a", the second one
multiplied by Cla™~!,..., and finally the n-th row multiplied by
Cr~'a. Obviously, on the place of z* we get the value (z + )",
and the value of the determinant remains unchanged.

Now we consider the case of columns got by means of differ-
entiation. Fix the row with number n + 1 and consider the row
with number n + 1 — ¢ and the column got from the first one after
differentiation j times.So on the intersection of the n + 1-st row
and the j + 1-st column stands C;."j z"~ 7. We make the same
procedure as in case of the first column. ¢ may change from 0
till n — 7, in the column above the element C*~7z"~7 stand the
elements C7~7"*z"~7=*. Since the n + 1 — i-th row is multiplied
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by C*~*a’, so using the equality
CcricnziTt = cpic

on the place of C"~7z"~7 we get the value
n—jy n-J
n—3—4% _n—j—t,m—% 4 __ n—j 1 n—gj—9¢ & __
E C .-l 'z Ccr =C, E C,_;z o =
=0 =0

= C:_J (1: + a)"—",
which proves our assertion.

Suppose the columns of our original determinant are arrenged
according to the multiplicities of the variables, i.e. the condition
r, >r, > ...>r, is fullfilled. It can be easily seen that there is
no loss of generality since after a certain number of transposition
the determinant always may be represented in such form. The fact
that the sign of the determinant does not change follows from the
proof and from the condition that in the differences z; — z; always
7 > t. We prove our assertion by induction. Let n = 2. Then on
the basis of (14) our determinant takes on the form

1 0 1
0
z C? j
2 1 2
(15) T Ciz y
z? C2Zz? y°
gritra—1 C::I:‘:j?xr;+r,—2 . y"1+f2—1

We have shown that the value of this determinant remains un-
changed if we add arbitrary number to its variables, so we sub-
tract from all the variables z. In this case in the first r, columns
only the elements of the principal diagonal are different from zero,

they all are equal to unity. So we have to evaluate the value of
the determinant

Clt(y—z)™ e Crrmnatl(y —g)ri-ratt
1 ri
Crity—ant L Cply-gn

ClinZiy—z)nt-t .. C,._(y—z)
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Take out from the first column (y — z)™*,(y — z)"* ' from the

second, ... (y — z)"*~"**! from the last, i.e. from the whole de-
terminant
'l('l -1)

(v - o)

After this operation in each row the elements belonging to the dif-
ferent columns contain y—z at the same power. Subtract from the
second column the first, from the third the second, etc. Executing
this procedure r; times we obtain

oy 0 0
Ciy - 2) Cy-2) ... 0
Chilily—a)t Chlily—2)t ... Y i(y—z=)!
Factor out from the second column y — z, from the third one
(y — z)? ,... ,and, finally, from the last column (y — z)™*~! i.e.
from the whole determinant
rz(vz—l)
(y—z)

After such transformations we obtain a determinant in which all
elements above the principal diagonal are equal to zero and all
elements on the principal diagonal are equal to unity. Collecting
all our results we get that (15) is equal to (y — )™ "* what proves
the lemma in the case of two variables.

Assume the lemma is proved in case of n — 1 variables and
prove it for the case of n ones.Since the value of the determi-
nant depends only on the differences of the arguments instead of
Zy,...,z, Wweput z, —z, =0, z, — z;,...,z, — z;. Now in
columns which contained z, the elements of the principal diago-
nal are equal to unity, all other elements are equal to zero. So we
have to find the value of determinant

(:1:2 —Il)r‘ Clrl—l(z2 _zl)rl—l

(zz —z,)*! Cltyi(ze — )

_ rit...+ra+1 rit...tra—2 _ rit...+ro—2
(222 x1) ! " C,l+_“+,:_1(:1:2 Il) 1 n
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From this determinant, similarly to the case of two variables, the
multipliers

r»(ri-l)

(IJ' _xl)rlrj_ 2 ) .7.:2’3’---’""

can be factored out. Executing the same procedure concerning
the subtraction of columns and factoring out the corresponding
multipliers, from the whole determinant we get the factors

I, — " 3 — ooy \ Ty — T r .
( Il) 173 (27 T, )n's (17 z ) 1Tn

If we denote the determinant corresponding to (14) by
D,(z,,...,z,) then obtain the following result

n
D,,(zl,...,:r,,) = Dn_l(zg — T1yeeey Ty —Il) H(zj —zl)”" =

=Dn—1(32a- n)H  — T1 )rl"a

where for D,_,(z;,...,2z,) an a.nalogus representation is valid
according to the assumption of induction. The lemma is proved.

REMARK. We can consider a similar determinant whose eva-
lution leads to the previous one. We show that

1 __m (m+1)m 1
z;" x:n-{»l m+2 e zr
1 _ m+1 (m+2)(m+l) 1
+1 +3 +3 oo +1
=T =7 =7 T
1 _m+2 (m+3)(m+2) 1 —
z;""" z;""” z;""" e —z?‘*’ cee
1 _m+ec—1 (mtec)(m+tec—1) 1
z;n-!-c—l ::n-f-c z;n+c+l L z:l+c—l
n
El:’k.l n rg—1 n
= (=1)*=1 I I I | ) I | —re(m+rg—1)
k=1 I=0 k=1
1
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where n is the number of different variables, r, the number of
columns containing z;, and %], as usually denotes the greatest

n
integer in 2, 3~ . =c.
k=1

Proof. First of all we remark that for each variable z;/t =
1,2,...,n/ the elements of each even column have the sign minus
/it follows from the fact that we differentiate variables with neg-
ative exponents/. So for each variable —1 is factored out in the
power [*+]. Futhermore, for each variable we factor out from the
first column 0! %7, from the second one 1!+, .., from the last

one(r; — 1)!—3%—5. After such operations we obtain the factor

]

»
(-1

ul_,‘

] n r‘_l n _r|~(2m+r|--l)
(#) Hzi ’ ’
0

i=1 I= i=1

and the determinant takes on the form

m-1 m-1

1 cm cm=! 1
1 m 1 m 1 1
z) Cm+1 z Cm+23! ZTp
1 m+1 1 m+1 1 a
z: Cm+2 : Cm+3 z: z3

1 m+c—2_1 m+c—-2_1 1
x:-l Cm+c—1 i—l Cm+¢ zg¢— 1! 3:-1

Using the equality C¥ = Ck_, + C}}! the elements of the last
column for each variable may be represented in the form of a sum.
Subtract from the last column the elements of the previous one.
We execute this procedure r; — 2 times /i.e. subtract from the
t + 1-st column the :-th one, the so obtained 1 + 1-st column from
the ¢+ 2-nd, etc., and the transformation in each step begins with
the column standing one place more left /. Then after subtitution
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m+c—1

L. LAKATOS
z‘—j = y; we come to
1 cm-t cm-ritt
. Cmm . Cmm—r,-+2 .
y.; m+1y.12 mtl.+3y.;
Y; C:::Izlyj e GRS Y;
y;—l Cm+c—2y;—1 . Cmic-"j c—1

m+c—1 yj

i.e. to a determinant of form (13). After analogous transforma-
tions

r.(r;—-1) _r-(r-—l)
3

—_ 2
Y; =T

can be taken out. Collecting all factors we obtain the final result

SUH m st
= JTITe Iz 1 (}——:—)

i=1 =0 i=1 1<i<3<n
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