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NUMERICAL INTEGRATION WITH
LINEAR COMBINATION OF
CHEBYSHEV-GAUSS QUADRATURES

A. HAJOSY

Summary

A numerical integration method based on a special combina-
tion of the two Chebysev-Gauss quadratures is presented. This
procedure enables us to determine the bound for error of the cal-
culated value starting from the quadratures series themselves.

1. Introduction

The most problematical part of numerical integration is the
determination of bound for error. Using any quadrature for-
mula,the calculation of bound for error demands the knowledge of
some higher order derivate of the function to be integrated. The
error can be estimated only if this derivative is bounded in the
domain of integration, and if this bound can be calculated. Ow-
ing to this circumstance the error estimation of the quadrature
formulae, especially that of the higher order ones (e.g. Gaussian
type quadratures ) is rather cumbersone.

The error can be reduced by dividing the integration domain
into sections and using some lower precision formula for the sec-
tions separately. Thus it is possible to reduce the bound for error
without the necessity of estimating higher derivates of the func-
tion. Among these methods the simplest one is the trapezoidal
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rule, but even then a bound is a needed for the second deriva-
tive, and it is still to be feared that the calculated bound for error
will be too high. In case of integrations requiring high precision
another problem arises from the computations: summing up nu-
merous terms the rounding errors may reach a significant amount.

But the main difficulty of the task of numerical integration
is that we have to know too much information concerning the
function to be integrated, e.g. we have to know the bounds of
its higher order derivatives. In case of practical problems serious
difficulties arise in the calculation of these quantities or it is even
impossible to obtain them.

Now we will present a method where no derivatives have to
be known for the estimation of errors, yet it is applicable to a
relatively large class of functions. The essence of the method can
be reviewed briefly as follows. Let the function be differentiable
continuously five times in a finite interval. We approximate the
integral I of function f for this interval by two Gaussian type
quadrature series, using an increasing number of points. Let these
be denoted by {C,} and {S,}, respectively. For the elements of
the chosen class of functions and for the chosen quadrature series
we have 4

S, <I<C, or C,<I<S,

when n exceeds some threshold index N. The convex combination
of the two series forms a new series converging to I:

I, =aC, +(1-a)S,, 0<a<l.

Owing to some order of magnitude relations concerning C,
and S, , the error can be estimated as follows:

|[I-I|<|C, —S,|

We will also determine the number a for which the order of
convergence of the linear combination is maximum.
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2. Notations
Let T, denote the Chebyshev polynomal of first kind:
T, (z) = cos(narccosz), n=0,1,..., z € [-1,1],

t.x the zeros of the polynomial:

2k -1
n

t,x = cos m, k=12,...,n

We denote the Chebyshev polynomal of second kind by U, :

__ sin(narccos )

Un(z) =

n=1,..., ze€ (1,1
sin(arccosz) ’ B (=1,1),
and its zeros by u,,,:

Upp =cCcos—m, k=1,2,...,n—1.
n

The integral of the function f, its Chebyshev-Gauss quadra-
tures calculated with the Chebyshev polynomals of first and sec-
ond kind are the following:

1
Iz/f(a:)d:n,
-1
7]’ n
Cw =;k§_jlf(tnk)-\/1—tzk,
n-1
™
S, = ;kz—:lf(u,,k) W1-u?,,n=2.3,...

Theorem. In case the function f is five times continously
differentiable within the interval [-1,1] ,
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1) there ezist such a threshold N that
2 1 .
lI—gcn—§Sn|<|Cn—Sn|, 1fn>N,

2) among the conver combinations
{aC, + (1 - 0a)S,}, 0<a<l1

the order of convergence for a = 2/3 s O(1/n*), while that

in the other case is O(1/n?).

Proof. The theorem will be proved first for the Chebyshev
polynomials of second kind, then for the series of the function f
expanded in terms of Chebysev polymials of second kind.

a) Let us take f =U,,,_,, m=1,2,.... the Chebyshev poly-
nomial of even index is an odd function, therefore its integral
and its approximative values vanish. Let us denoted by the
index m the integral of U,,,_, as well as its approximative
values. Then we have :

1

f 2
I, = | U;,- dr = in(2m — 1)zdr = )
/ 2m—1(z)dz /sm( m — 1)zdz Py—
-1 0
T 2k —1 T 1
Cam = =3 sin(2m —1 =T _ ,
n Zsm( m—1) m | n sin = (2m — 1)
k=1 2n
T k w m
Spm = — in(2m —1)—m = — - ctg—(2m — 1).
" Z:lsm( m )n7r m chn( m — 1)

If we have n > m, then
Snm < Im < Cnm’

because
2 7(2m — 1) — sin - (2m — 1)

Cnm - Im = : .
2m—1 sin ;= (2m — 1)

>0,
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and

Snm - Im =

2 Z(2m—1)cos Z(2m — 1) —sin 7= (2m — 1) <o
T 2m -1 sin - (2m — 1)

if

0<2Ln(2m—1)<1r.

Thus, for any convex combination of the approximative sums
C.m and S,,, the estimation

I, — aCom — (1 — @)Sum| < |Com = Sam|

is valid for n > m. The order of convergence of the series
{Cpm} and {S,,. } is O(1/n?), while the same for the series
{2C,n + :S.m } is O(1/n*). These orders of magnitude are
shown by the following limits :

2

lim n*(Cpp — In) = 71r—(2m -1),

n— oo 2
7[.2
lim n2(Sy, — In) = -5 @m-1), (%)
2 1 mwé
. 404 - _ — _ 3.
nl_lp; n (30,,,,, + 3S,.,,. Im) 1440(Zm 1)

b) Now let us take

Z mUzm -1(Z), where

a, = ;/Vl—zzf(z)Ugm_l(x)dz
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Since f is five times continously differentiable on the interval
[—1,1], we have a,, = O(1/m?®).
Thus, the integral and the approximative sums are:

-1 =
oo -

= E :aanm, Sn = E :a'msnnw
m=1 m=1

Since a,, = O(1/m?), the three series are absolutely conver-
gent.

To prove the theorem we have see only that there exist a
number N such that the quantity I is between the series C,, and
S,, i.e. we have

(C.—D(S, —I)<0, ifn>N.

For this it is sufficient to show that the second term of the
right side of the equality

1
Sy —I=—2(Co—1I)+ 3(:‘;-0,, +35. - 1)

converges towards zero in higher order of magnitude than the
expression on the left side.

The limits showing the order of magnitude can be calculated
like those under (*), since the limit sign and the summations are
interchangeable owing to the absolute convergence.

lim n?(C, —I) = lim n? Za Cim — iamIm

n— oo n— oo

oo

i-:: mnllm n2(C.m —I,,.):% Zam(2m—l).

m=1
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Likewise we have:

lim n2(S, — I) = "—i am (2m — 1),

n— oo 6

. 2 S
lim nt(C, + 3 s —n= 14 Z (2m —1)°

m=1

3. Conclusion

A similar theorem can be started for the same 2/3 to 1/3 lin-
ear combination of quadrature of series of Gauss type defined with
the so called ”shifted” Chebyshev polynomials. The definition of
these polynomals is :

T:(z) =T,.(2z — 1), U:(z) =U,(2z - 1).
The zeros of T are :

2 2k —1
2n

* — —
t,, =cos m, k=1,...,n

and the same for U are:
* — 2 _
U, = COS —2n1r, k=1,...,n—1

The integral of the function f and the quadratures according
to T and U, are respectively:

=/f(:z:)dz,
C TN e Y ST
Cn - nkg:lf(tnk) tnk(l tnk)’

n—1
* 7r * - -
Sn = ;Ef(unk). u’nk(l—unk)'
k=1
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When the function f is five times continuously differentiable
on the interval [0, 1], then the same holds for the quadrature se-
ries {C:} and {S:} as we have proved for the Chebyshev-Gauss
polynomials. Among their linear combinations the one defined as

2 * 1 *
{gcn + 35,.}

approximates the true value of integral in a higher order of mag-
nitude than the other ones, and the error can be estimated in a
similar manner:

2 1
|I—§C; —gs,:!< |IC, — S|, ifn>N.

For a proof let us write down the integral of U, _, and the
C,,. and S;  approximative sums as well. Using the definition
of U;,._,, the following equalities can be verified:

1 1
2-/U;m_1(x)da:=/Uzm_l(z)dz,

0 -1

2C;m = Cnm) 2S':m = Snm ]

m=1,2,..., n=203,....

4. Example

The surprisingly fast convergence of the 2 to 3 combination
of the Chebyshev-Gauss quadratures has been observed in solving

lots of problems. Now we will show the advantages of the method
in an example.

The problem con be found in the book af Anthony Ralston :
Introduction to the numerical analysis, in the chapter discussing
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the choice of quadrature methods. The integral in question to ten
significant digits, is:

4

1
/ dzx = 2arctg4 = 2,651635327.
1+ z2

-4

The problem shows that the accuracy cannot be improved
arbitrarily with the help of higher order Newton-Cotes formulae
(owing to the rapid increase of derivatives). For the solution of the
above problem the book suggests the use of methods which divide
the interval in parts, e.g. the trapezium and Simpson formulas.

The table shows that linear combination of Chebyshev-Gauss
quadratures assures a much faster convergence than those men-
tioned above. (For the sake of clarity we have underlined the
correct decimal.) E.g. In case of the Simpson formula, assuming
35 points of division, the error is 2,8 - 10~ ¢, while the error of I,
is 1,3-10"8 at the same time.

The table shows also that the series C,, approximates the true
value from above, while S, does it from below. (The series C: and
S not contained in the table for the sake of space saving show
a similar behaviour.) The bound for error calculated from their
difference is 7,9 - 10~° for 35 points. With the Simpson formula
the same number amounts to 3,3-10~2, but for the determination
of this we had to compute the bound max |fV | = 24.

It is worth mentioning the high relative accuracy of I despite
the low number of points the difference between I; and I, dimin-
ishes. Bot phenomena can be observed in case of a lot of prob-
lems. But it is perhaps more important to note what the example
shows concerning the relation between the Romberg method and
I,. (The library programs of numerical integration generally ap-
ply Romberg-Type methods.) In high precision computations, up
to some 20 significant digits, the accuracy of the Chebyshev-Gauss
series is generally higher than that of the Romberg method if we
use the same number of points.
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Summing up, we can form the following statements concern-
ing the approximative series calculated as linear combinations of
Chebyshev-Gauss quadratures. For their application it is suffi-
cient to know that the integrand is differentiable five times on the
interval of integration. The computation of the approximative
value and of the bound for error is very simple. Finally it is to
be mentioned that these integral-approximating series show gen-
erally a very quick convergence,as we have shown in the example
above.
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