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AN A-STABLE THREE-LEVEL METHOD
FOR THE GALERKIN SOLUTION OF
QUASILINEAR PARABOLIC
PROBLEMS

I. FARAGO - A. GALANTAI

Abstract. Parabolic partial differential equations are often
solved by semidiscrete Galerkin methods. These methods first make a
finite element discretization in the space variables reducing the problem
to solution of the Cauchy-problem of a system of ordinary differential
equations. This problem is then solved by a highly stable difference or
Runge-Kutta method.

In this paper we investigate the numerical solution of the semidis-
cretized Cauchy-problem for a class of nonlinear partial differential

equations used in the modelling of chemical reactors and other areas.

1.Introduction

Consider the following initial-boundary value problem

(1) Z—’: — Pu, ((z,t) € 0 x (0,T])
(2) Bu =0 ((z,t) €T x (0,T))

(3) u(z,0) = uo(z) (z € 0).
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where z = (z,,2;,...,2y) € 2 C RY ,t € (O,T],T > 0,00 is a
bounded domain with a sufficiently smooth boundary. The oper-
ator P is defined by

(1) 2 (5) 3o) = Folo 2.0,

The operator B is representing some classical boundary condition
and u,(z) is given function. Assume that the following conditions
are satisfied.

(i) There is only one generalized solution of the problem (1)-(3)
in H*(Q) for arbitrary fixed t € (0,T]) (see Ladizhenskaya
[13] and Lions [7]).

(ii) For arbitrary fixed z € {2 the matrix [F;j(z)]Y,_, is symmet-
ric and uniformly positive definite,that is there exist such pos-
itive numbers k,, k; that for any vector £ = (§,,&;,...,&n) €
RY the inequality

N
(5) koY €< ZF., €£,<k12£2
holds.

(iii) The function F, is continuos and uniformly Lipschitzian in
its first variable, that is there exists a constant L, > 0 such
that

(6) |F0(81,I,t)—F‘0(32,I,t)l <L0|31 —32|

is satisfied for all s,,s; € R and for all (z,t) € 1 x [0, T].
We also assume that there exists a space V}! of finite elements
which is a finite dimensional subspace of H' (1) and it satisfies the

approximation property that for given | € N* and an arbitrary
u € H'(Q) N H'*'(Q) there is an element @ € V;! such that

(7) lu = @llo + Allu — @lly < ch™ lullys,
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where ¢ is a positive constant and k is the maximal diameter of the
discretization.(For the existence of such spaces of finite elements
see Strang [8], Molchanov [14], Faragé [3].)

Let V}! = spanp,...,p,] and seek the approximate solution
in the following form

n

(8) Un (z’ t) = E Qa; (t)(p.- (:1:)

=1

Then for the unknown vector a(t) = [a;(t),...,a,(t)] we have
the Cauchy-problem of the form

9) Md +Qa=F(a,t) (0<t<T)

(10) Ma(0) = &,

where M and Q are positive definite matrices,F : R**' — R"
and the initial value &, are also given (see [3],[8]). Hence the
matrix M~! exists and the problem (9)-(10) equalent with the
problem

(11) o = Aa+ f(a,t)

(12) a(0) = ap.

It can be shown ([8],[5]) that the problem (11)-(12) satisfies the
following two properties

(iv) The matrix A has only negative eigenvalues and it is diago-
nalizable.

(v) The map f : R**! — R is continuous and there exists a
constant L > 0 such that

(13) ”f(ylat) - f(yz»t)” < L”yl - yz” (ylay2 € R")
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holds for all t € [0, T'].

It is known ([1],[2],[11]) that the problem (11)-(12) can
be considered as a stiff system. Therefore we need to choose a
highly stable method to solve it.

In this paper we are going to investigate linear two-step meth-
ods. Two-step methods of the form (g,0) can be defined by their
characteristic polynomials

(14) s(6) =) .t o(8) =) o8,

where (1) = 1 is assumed. The method (s,0) is of order two if
the coefficients satisfy the following conditions:

S1=1—-2¢;, ¢o=-1+¢,,

(15) 1 1
0, =‘2‘+C2"202a Oo :'2‘—C2 t+ 0,

DEFINITION 1. Consider the test problem

(16) ¥ =2y, y(0) =y (r€C)

Let z = Ar (r > 0, € C and denote by y,, the numerical solution
of (16) at the point t,, = mr (m > 0). The set S of those values
of z for which {y,, }2°_, converges to 0 for all y, is said to be the
region of absolute stability of the method. '

DEFINITION 2. A method is said to be A,-stable if
(-00,0) € S. The method is said to be A-stable if C- C S,
where C~ = {z|Re(z) < 0}.

Applying the method (14) to the problem (11)-(12) we obtain
the recursion

2 2 2
(17) Zc.a”‘*' = rA(Za.a"‘*‘) + rZo,f(a'"*‘,tm+,)
2=0 s=0 s=0
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which is nonlinear systems of algebraic equations for the unknown
vector a™*? (a™ is the approximation of a(t) on the time level
t,. = mr). In order to avoid the solution of this nonlinear system
we linearize it using axtrapolation ([10]). Keeping the accuracy
of the scheme we change t,,,, and a™*2% to ¢t and a™*2,
where

m+2

te—7 = tm + (202 + 1),

(18)

a™*? = (20, + 0,)a™*! + (0o —02)a™

are extrapolated values. Substituting (18) into the righthand side
of (17) one obtains a linear algebraic system.

2. A special two step method and its stability

We derive a one-parameter class of two-step methods which
are based on the extrapolation principle mentioned in the previous
section. The method must be of order 2. We start with the
standard two-step methods and choose the parameters as follows

(19) G2=-,0,=0 (®€R).

1
2
Then we have the following coefficients

1,1
(20) CO_ 2’ Cl_ ’ g2_2

g, =0, 0, =1-20, g, = 0.

If we apply this scheme to the problem (11)-(12) and use the
notations

(21) a™*1® = @a™+? 4 (1 - 20)a™*! + Oa™,

f'"+1'9 — Gf(am+2,tm+2) + (1 _29)f(am+l’tm+1)+

(22) +0Of(a™,t,)
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then we obtain the recursion

am+2 —a™

(23) 21_ :Aam+l.9 +fm+1.9 (mzo)-

The extrapolation formula(18) has now the form

(24) teg =tm + 7 =tmy1, a2 =a™*!

and f»*1® ~ f(t,,1,a™*!) for small r’s. Thus we have the
following linearized form of scheme (23)

am+2 —a™

(25) 27

= Aa™*1O 4 f(tm s, 0™ )

(m=0,1,...,).

Next we investigate the stability properties of the method
(25). If we apply (25) to the test problem (16) then we get the
difference equation

ym+2 _ym

(26) 27

=Ay™t1® (m>0)

which is equivalent to the recursion

(27) (1-202)y™*? —2(1-20)zy™*! — (1+202)y™ =0
The characteristic equation of (27) has the form

(28) TII(¢,2) = (1 —202)¢ —2(1—-20)2¢ — (1+202) =0.

Theorem 1. The method (25) is A,-stable iff © > .

Proof. The solution of (27) is tending to O for all y, if the
zeros of the characteristic equation (28) lie in the disk {w € C :
|lw| < 1}. Hence it is enough to show that for all 2 < 0 this
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condition is satisfied if and only if © > ¢. If z < 0 the coefficients
of (28) are real and we can use a special case of the Schur-Cohn
criterion (Kobza [6]): A real polynomial of the form

(29) a;z° + a,z +ay (a; > 0)

has it both zeros in the open unit disk if and only if the coefficiens

satisfy the system R

(30) a, +a, +a; >0, a; —ay, >0, a; —a, +a, >0.

Using (30) one can show that the zeros of (28) lie in the open unit
disk for all z < 0 if and only if © > ;.

Theorem 2. The method (25) is A-stable if © > .

Proof It is enough to show that for all 2z € C~ the ze-
ros of (28) lie in the open unit disk. Consider the Moebius-
transformation

(31) ¢=@P+1)/(p-1)

which maps the open unit disk onto the half plane Re(p) < 0, that
is [¢| < 1 iff Re(p) < 0. Furthermore, let be ¢ = —2 and consider
the equation

(32) H(p,q) = (p—1)°’TI((p+1)/(p—1),—q) = 0.

The method is A-stable if and only if Re(g) > 0 implies Re(p(q)) <
0 where p(q) denotes any zero of (32) as a function of ¢. Similarly,
if ¢(p) denotes the zero of (32) as a function of p then the latter
condition is equivalent to the condition, that Re(p) > 0 implies
Re(q(p)) < 0. By elementary calculations one gets

(33) H(p,q) =4p+2q(p* +40 —1) =0.

It is easy to see that for p? = 1 — 4O there is no zero of (33).
Hence we can solve (33) in the form

(34) ¢ = —2p/(p* +40-1) = —2[p|p|* +(4©—1)p]/|p* +40 1.
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For © > + and Re(p) > 0 we have
Re[p|p|* + (46 —1)p] > 0

which implies Re(g(p)) < 0. Thus the theorem is proved.

It is noted that A-stability implies A,-stability. This is the
reason for the assumption © > ; of Theorem 2. It is also worth
noting that the method (25) is I-stable for ® > % which also

4

implies the A-stability (see Wanner-Hairer-Norsett [9].

3. The convergence of the method

We construct an error estimation for the global error from
which the convergence of the algorithm follows.

Rewrite the method (25) in the form
(35) am+2 _ am — 2T[Aam+l,6 + f(tm+1’am+l)]

and let @™ = af(t,, ), where af(t) is the exact solution of (11)-(12).
The local error of the method at t,, = mr7 is defined by

&m+2 — & = 2T[A((")&m+2 + (1 _26)&m+1 +@dm]+

(36)
+2Tf(tm+1a&m+1) + T

Introduction the notation e,, = a™ — &™ for the global error of
the method at the point ¢,, we obtain

(37) em+2 —€m =27A[O€n 42 + (1 —20)e, 41 + Oe,, ]+ R,
where

(38) R =2(f(tmss, 0™ ) = [(tms 1 &™) = T

By simple calculation one has

(39) (I—207A)e, 2 —2(1—20)7Aen sy — (I +207A)e,, = R,
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and

=2(1-20)(I —207A) '1Aen 41+

(40) €m 42
+ (I —207A)" (I +2071A)e,, + (I —207A)"'R,,.

Introduce the notations

_ -1
(41) Em _ [C:+1] c R2n’ Gm — I:(I 297;)A) Rm] € R2n

and the block Frobenius matrix

d(rA) =

_ [2(1 —20)(I —207A)"'rA (I-207A)"*(I+ ZG)TA)]
- I 0

The eigenvalues of ®(7A) coincide with the zeros of the charac-
teristic polynomial of (39). Recursion (40) takes the form

(42) Emsi =®(rA)Ep +Gn (m=0,1,...)

with the solution

(43)  E, = [®(rA)|" E, +m2—[<p(m)]m-"-lc,. (m >0).

1=0
The triangle inequality implies

m-1

(44) (Bl < @A™ [ Eoll+ D @(rA)™ = IG:ll.

1=0

The term G; may be estimated as follows

IGill = (I — 207 4)™ " Ri|| < ||(I - 2074)7*||(2r L[| E:|| + | T: )
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Assume that there exists a constant 4+ > 0 such that for every
7 > 0 the inequality

(45) 17 —2074)7 || <~

holds. It is also supposed that A is diagonalizable, that is A =
X~'AX with A = diag(},,...,A,). Then we have

(46) B(rA) = [X(;l qu} d(rA) [)0( ;)(]

which implies

o s[5 2 £ 4

Since in the spectral norm || - || we have

(48) 18(rA)" 1 = max @(r3)"

and the method (25) is A-stable we can use the uniform bounded-
ness theorem of Gekeler [5]. This result guarantees the existence
of constant K > 0 such that

(49) sup_sup [[®(¢)™| < K.

¢eC- meN
From (49) the estimations ||®(7A)™||; < K and
(50) [@(rA)™ |l < K k2 (X)  (m 2> 0)

follow, where k;(X) = || X~ !||z||X||; is the condition number of
the matrix X. Using (50) and (45) we have

1Bnll < K ka(X) (1Bl +v Y IT )+
(51) =0

m-—1
+ ) 2Kky (X)y7L||E¢|.

1=0
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We need a discrete version of the Gronwall-Bellman lemma : if
i—1

2(j) >0 (5 >0) and z(¢) < y() + 3 2(5)z(y) ¢=0,1,...,m;
=0

n € N then

m-—1

(52) z(m) <y(m)+ Y z(i)y(s) [[ [1+42(j)] (meN).

=0 I=i+1
In our case we can chose
z(1) = || E||
t—~1
(53) y(3) = Kko (X) (| Eoll + ) IT511)
=1
2(1) = 2Kk;(z)yrL = 2*.
Using the monotonicity of y(¢) and the lemma we obtain
[ ||<Kk2(X)(||EoI|+'YZHTI| (1+Z 1+2°)m7 1),

=0

The inequality 1 + 2* < e*" implies that
1+Z (T+2z)" "t =(142)" <em* .

Hence we have proven

Theorem 3. If the matriz A is diagonalizable, o(A) € C-
and (45) s satisfied then

m-1

(54) IEn|l < eie™ (| Boll +~ Y IT511),

j=1
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where

(55) ¢, = Kk, (X), ¢; = 2¢,4L.

First we remark that the exponential part of the error con-
stant is due to the nonlinear part of (11)-(12). Consequently for
vanishing nonlinear part (L = 0) we obtain a sharp estimation
(see [5]1). In our application o(A) € C~ (condition (iv)) and
what is more 0(A) C R~. If A is diagonalizable, then

(I—2074)" ' = X~ '(I -207A)"'X

and

(I —2074)7 ||, < k2 (X)[|(1 — 2074) " |2

For © > ¢ |[(I —207A)7'||; < 1. Hence one can choose y =
k;(X). If A is Hermitian, then k,(X) = 1.

The convergence of (25) clearly follows from the inequality
(54) and the fact that the methods under consideration are of
order 2.
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