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In this paper cooperative solutions of infinite-person games with time-
depending fuzzy coalitions are studied. Infinite-person games were intro-
duced by Aumann in [1]. For their applications in economics we refer to Hil-
debrandt [2]. The idea of using fuzzy coalitions (i. e. coalitions with “rates
of participation”) is due to Aubin (see [3], [4] and [5]). Dynamic coalition
models were considered in [6]. Cooperative solutions of N-person dynamic
games were studied e. g. in [7].

In the present paper the community of players is modelled by a com-
pact metric space. A finite subset of players is supposed to control the en-
vironment. The dynamics of the latter is described by a linear differential
equation, and its final state determines the pay-off of each player. Under
continuity assumptions on the pay-off functions, the existence of a coopera-
tive solution for the whole infinite set of players is proved.

1. Let 2 be a compact metric space. The elements of Q2 are interpreted as
players. We suppose that the environment of the players is described by the
differential equations

x = Ax
with an appropriate matrix A€¢R"*", Then we consider a finite subset
‘QN = {wl, ooy wN}CQ

of distinguished players which have the option to influence the environment.
The influence of player w; is given by the equation

where b;¢R" is fixed (i€ 1, N).
For a given cc@ := {1, ..., N} the set of players
1 Q.= {w;: i€c}
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is interpreted as a coalition. The influence of a coalition is supposed to be the
superposition of the single influences:
2) x = Ax+ Xb,.
icc

For a more flexible model, we suppose that, instead of forming a “strict”
coalition, each player in Q, may have a ‘“rate of participation” v;€[0,1]
(i€l, N).

Definition 1. Any element veU := [0, 1]* is called a fuzzy coalition.
Any veU, := {0, 1}* is called a pure coalition.

Clearly, there is a natural one-to-one correspondence between the pure
coalitions and the sets (1). Moreover, let’s consider both U and U, as sub-

sets of RN, Then the set of fuzzy coalitions is nothing else than the convex
hull of the set of pure coalitions.

Now fix T€R, and put
AU := {uel¥[0, T), ut)eU for a.e. [0, T1}.

The elements of U are interpreted as time-depending fuzzy coalitions.

We fix an initial state x, € R” and consider the mapping L: LY¥[0, T]-R"
which associates with each u€ LY[0, T] the point x(T) of the solution of
the following initial value problem

N

d) X = Ax+ D bu,
i=1
x(0) = x,.

For a ueU, (3) is interpreted as the dynamics of the enviroment under the
influence of the time-depending fuzzy coalition u. Clearly, (3) is an exten-
sion of (2) in some sense.

2. Having set up the dynamics of the game, we turn to the formaliza-
tion of the pay-off. Let

g 2XR*~R

be an upper semicontinuous function such that for every y€R"” the function
g(-, y) is lower semicontinuous. The function g is interpreted as follows. For
every (o, y)€2xR", g(w, y) is the pay-off received by the player w, provided
that the process (3) has ended at y.

Let’s define
G: R"~C(Q), G() := g(+, ¥);
F:=Go Llu-

According to the above interpretations, the function F: U~ C(L) asso-
ciates the resulting pay-off as a continuous function of the player with every
time-depending fuzzy coalition uc U.
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Definition 2. The pair I': = (U, F) is called an infinite-person dynamic
coalition game.

Definition 3. A u, €@ is called a cooperative solution of the game I if
for every u€ U the inequalities

Fu)(@)=F(us)(@) (0€€)
imply that
Fu)(w) = F(ux)(@) (0€Q).

Remark. In terms of vector optimization, a cooperative solution u,
provides a maximal value of the function F with respect to the partial or-
dering of C(Q2) according to the closed convex cone K of nonnegative func-
tions in C(2). (See e. g. [8].)

In the next section we shall prove the existence of a cooperative solu-
tion to the game I'. To this end we shall need the following.

Lemma. For any convex compact set VeR™ the set
@ := {ueLY[O, T]:u(t)e V fora. e. t€[0, T}
is weakly compact in LY [O, T).

Proof. It is obvious that @@ is convex and bounded in norm. First we
prove that @ is closed in the norm topology.

Assume that u,€@ (neN) and lim (u,) = u,€@ in the norm topology.
We prove that u,€(0. VcR" being convex, closed and V=R¥, V can be rep-
resented as the intersection of a countable set of closed support half-spaces.
Thus, it is sufficient to show that for any a¢RM and «€R

VcH:= {zeRVN: (a, 2)=a}
implies that

“4) uy(t)eH for a.e. te[0, T].
For the characteristic function y,,: [0, T]-R of the set

M := {te[0, T]: ui(t)¢ H}
we have

T
[ 1@ 1) di=ai(M) (neN),

where A is the Lebesque measure in [0, T']. Since the sequence (u,) also weakly
converges u,, we get

lim [ f (a, u,,}d/l] = lim [ fT 1l a, u,,)dl] = f A, tpdA =

_ A[ (@, ug)dh = A(M).
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To prove (4) suppose the contrary: A(M)=>0. Then from
(@, u(t))y=a (teM)
we obtain that

A[ (@, up)dA=aA(M),

which contradicts to (5).

Consequently, @ is closed in the norm topology. By its convexity @ is
also weakly closed. On the other hand, any weakly closed convex and norm-
bounded set in a reflexive Banach space is weakly compact (see e. g. [9]). O

3. In this section we prove the following existence theorem.

Theorem. The infinite-person dynamic coalition game I" has a cooperative
solution.

Proof. According to Krein’s theorem (see [10]), for any separable Ba-
nach space Z ordered by a closed convex cone K < Z, there exists a functional
P €Z* which is strictly positive in the sense that

(p, 2)=0 (2 K\{0}).

Since 2 is a compact metric space, C(2) is separable. Applying Krein’s the-
orem with Z := C(2) and

K := {peC(Q): p(@)=0 (0€2)),

also using Riesz’s theorem, we obtain that there exists a Borel measure u in
Q with the following properties: For any € C(R2)

P(0)=0(weQ)= f pdu=0,
Q2

YV oef: <;o(w)20}

= du=0.
s5c0:g@)~0) ] 7H”

Q

(6)
Now we define

[ U-R, f(u):=fF(u)dy.

Now we shall prove that the continuity assumptions on g in Section 2
imply the upper semicontinuity of f in the weak topology of . Hence, by
the weak compactness of @, the classical Weierstrass theorem guarantees
the existence of a minimum point u, of f. We shall see that u, is the required
solution to I

Let’s fix a uy€@. In order to prove the upper semicontinuity of f at u,,
we pick an arbitrary positive real number e. We define

Q:= L(U), yo:= L(u).
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First we show that there exists a neighbourhood Qy, of y, in Q such that

(7 2, ¥)<g(w, Yo)+e/u(Q) (¥€Qy,, w€Q).

We fix an arbitrary w,€£2. Then, by the upper semicontinuity of g and the
lower semicontinuity of g ((-, y,) there exist an open neighbourhood Q,, of
Yo in Q and an open neighbourhood ., of w, such that for every weQ,,
y€Q., we have

8w, ¥)<g(wo, Yo)+e/2(Q)
(@, ¥o)>&(wo, Yo) — /2u4(£2).
The family
Poyi= 20, X QueC 22X Q (wo€£2)

is an open covering of the compact subset Q X {y,} =2 X Q. Hence there exist a
keN and elements

o, ..., o*eQ

such that
k
QX{Y}T U Poy
j=1

"k
Theset Qy,: = N Qu; is a neighbourhood of y, in Q such that for every w2
j=1
and y€Qy, there exists a je 1, k with (o, )€ P; and
8(,¥)—8(@,yo) = g(,y)—g(@/, yo) +
+8(w, yo) —8(w, Yo)<e/2u(R)+¢/2u(Q) = &/u(Q2).

Now, from the variation of parameters formula, it follows easily that
the operator L is continuous in the weak topology of L¥[0, T]. Therefore
there exists a neighbourhood @, of u,in @ such that

L(u)€Qy, (u€Uu,).
Hence, by (7), we get that for any u€ @, and w€Q

F(u)() = G(L(u))(®) = go, L)<
<g(, L(to)) +&/w(Q) = F(uo)(w)+:e/u().

By integration with respect to the measure w, we obtain that for every
UE(Zluo

Ju)= [Fu)du= [ Flu)dp+e = f(uo)+e

that is fis upper semicontinuous in the weak topology of LY[O, T].
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Since @ is compact in the latter topology, by the Weierstrass theorem
it follows that there exists a u, € @ such that

® J@)=fuy) (ue@d).

Finally, we show that u, is a cooperative solution of I'. Indeed, let’s
suppose the contrary. Then, by Definition 3, there exists a u€@ such that

F(u)(w)=F(us)(w) (0€f)
and for some we Q2

F(u)(@)> F(uy)()-
Since w has the property (6), taking ¢ := F(u)— F(u,) we get

fa)=fw) = [ [Fu)— F(uy)ldu=0

in contradiction with (8). O

Remark. It is easy to see that the above theorem also holds for games
with time-depending dynamics, i. e. in case in (3) Aand b, (i€ 1, N) are, say,
continuous functions.
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