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Abstract. In his doctora! dissertation W. Wimmer has developed and im-
plemented (in the DESYNET) a method of imposing static routing con-
straints upon packet switching networks which allows store-and-forward
lock-up prevention in addition to avoiding ping-ponging and looping be-
haviour. The method is based on graph theoretic considerations, which are
studied in more detail in the present paper; in particular the problems of
constructing appropriate constraints and of minimizing their number are
treated and some conjectures due to W. Wimmer are proved.

1. Introduction

The work about deadlock prevention in computer networks has been
summarized, classified, and has been given a unified theoretical background
by Giinther [2]. Using his results Wimmer ([3], [4]) introduced two closely
related concepts of static routing constraints which, combined with certain
resource access constraints, allow the prevention of store-and-forward lock-
ups. If routing tables and routing algorithms are constructed in accordance
with the routing constraints no packet will travel around a cycle more than
once. Both concepts are graph-theoretically based, and in the following we
will deal with the graph-theoretic problems only. In fact, the routing con-
Strained digraphs (RCD), as we call them, are just a special case of the rou-
ting constrained switching networks (RCSN). They deserve our attention
because they allow better use of the resources (i. e. buffers). In Section 2 we
introduce RCSN’s and RCD’s, in Sections 3 and 4 we study their relation and
the question of minimizing the routing constraints, As is shown in [1] it is
important that the routing constraints are placed in such a way that bet-
ween any two nodes a shortest path of the unconstrained graph may be used.
This property of distance preservation will be studied in Section 5.

2. Routing constrained switching networks and routing constrained digraphs

2.1. Definition. A graph with barriers is a pair (G, S) where G is a graph
and S a reflexive, symmetric relation on the edges of G holding for adjacent
edges only. For (e, ¢’) €S we write e|e” as well and if e>#¢” we say that thereis a
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barrier between e and ¢/, which is the same as the one between e and e.
An S-walk in (G, S) is a walk in G such that for consecutive edges e, ¢’ (¢, ¢')§ S.
(G, S) is S-connected if for any two nodes v, w there is an S-walk from v to w.
(G, S) is cycle-separated if no S-walk uses the same edge twice in the same di-
rection. An S-connected, cycle-separated graph (G, S) is called a routing
constrained switching network (RCSN). O

Remark. Cycle-separated means exactly that one cannot walk around a
cycle (or rather closed walk) twice.

2.2. Example. One might conjecture that a graph with barriers, (G, S),
for which S is minimal among the relations that give a cycle-separated graph
(G, S) is automatically S-connected. This is not true as the graph in Figure
1 shows.

®

Fig. 1.

The indicated barriers give a cycle-separated graph with barriers which
is not S-connected. On the other hand in any RCSN there is at least one node
v and one edge e, such that v is a dead end for ¢, i. e. an S-walk using e has
to end at v. Otherwise there would be an S-walk using the same edge twice in
the same direction. If we have an RCSN on the graph of Fig. 1 only a node
of degree 3 might be a dead end for some e, hence 2 barriers are needed to
make some v a dead end for some ¢; removal of e and the two barriers gives a
cycle-separated graph with barriers and by the proof of (4.1) below there
have to be at least 5 barriers. Therefore any RCSN on the graph of Fig. 1 must
have at least 7 barriers.

2.3. Definition. Let D be an acyclic digraph having exactly one node
of indegree O (the start node) and let the relation S on the edges of the un-
derlying graph G be defined by S: = {(e, €’) |e, ¢’ point to the same vertex in
D}. Then (G, S) is called a routing constrained digraph (RCD).

Remark. The underlying graph of an RCD is necessarily connected, since
each component of an acyclic digraph has a node of indegree 0. The S-
walks of an RCD are those walks of the underlying graph that after using
some arc following its direction never use any arc opposite to its direction
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and that do not use the same arc twice in a row. Thus an S-walk may use
an arc opposite to its direction but only in the beginning.

2.4. Proposition [3]. An RCD is an RCSN, i. e.
(i) an RCD is S-connected,
(ii) an RCD is cycle-separated.

Proof. (i) There are directed paths P, Py, from the start node to v and w
respectively. Let x be the last common node of Py, Py,. Then using P, from
v to x and Py, from x to w we get an S-walk from v to w.

(ii) If an S-walk uses the same arc twice in the same direction, then
(see the remark above) it uses this arc and the arcs in between all following
their direction or all opposite their direction, i. e. the digraph is not acyclic. O

3. Minimal and reduced RCD’s and RCSN’s

3.1. Definition. An RCSN (G, S) is called transitive if S is transitive. It
is called reduced (t-reduced), if there is no proper subset (transitive subset)
S’ of S such that (G, S’) is an RCSN (transitive RCSN). It is called minimal
(t-minimal) if there is no RCSN (transitive RCSN)on G with a smaller num-
ber of barriers. O

We are interested in these types of RCSN’s because RCD’s, which allow
better use of the resources (buffers), give rise to transitive RCSN’s, and be-
cause we want to minimize the routing constraints. The following propositions
deal with the relation between the various types of RCSN’s.

3.2. Proposition. For each transitive RCSN N an RCD N’ can be con-
structed by deleting some barriers.

Proof. (1) In any RCSN there is at least one node v and one edge e such
that v is a dead end for e.

(2) In a transitive RCSN a node v, which is a dead end for one edge e,
is also a dead end for all edges at v, i. e. it is a total dead end. This can be
seen as follows. Take any edge ¢’ at v. Then e|e’, and for any other edge ¢” we
have e”|e, since v is a dead end for e. By transitivity then e¢”|e’.

(3) If a total dead end v together with all edges at it is deleted from a
transitive RCSN N the remaining graph N’ is connected. N’ together with
the separation relation restricted to the remaining edges is again a transitive
RCSN, since in N the transport of an object from one node v to another
node v cannot pass through v.

(4) The following (nondeterministic) algorithm accomplishes the con-
struction:

(i) Take a total dead end v of N.

(ii) Give all edges joining v an orientation towards v and delete the
barriers in v.

(iii) Denote the RCSN obtained by deleting v from N and restricting
the separation relation again by N and continue with (i) until N
contains only one node.
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(5) The algorithm in (4) obviously always terminates by delivering an
acyclic digraph whose start node is the node considered last. If we put bar-
riers between all the arcs pointing to a node we get barriers which were pre-
sent in the original RCSN. O

Remark. The basic idea of the above proof is due to Ute Brauer.
3.3. Corollary. (i) A t-reduced RCSN is an RCD.

(ii) Each t-reduced RCSN can be constructed by the following method. Start
with some node v,. Add some node v and edges incident with v fo the RCSN N
and put barriers in v between all these edges.

Remark. Not all RCSN’s obtained by the construction in (ii) are {-mini-
mal.

Obviously in the corollary instead of ‘¢-reduced” we can also write
“f-minimal’’; in this version the first part of the corollary was conjectured
by W. Wimmer.

Viewing the algorithm of (3.3) from a different angle we get an algorithm
to construct a f-reduced RCSN for a given graph G.

3.4. Corollary. (i) The following construction gives exactly the t-reduced
RCSN’s on a given graph G: If G has one node only we are done. As long as
there is more than one node choose a nodev such that G-v is connected. Put barriers
between all edges at v and put G: = G—v.

(if) For any graph G there is an RCD on G.

The sum over the degrees of the chosen nodes is the number of edges
of G, the number of barriers added in each step is quadratic in the degree
of v. In order to minimize the number of barriers one has to have the degrees
equally distributed (see Wimmer [3]). One might conjecture that it cannot be
wrong to choose any node of minimal degree first to get a f-minimal RCSN —
deletion of some nodes reduces the degrees of the remaining nodes. The follo-
wing example (Fig. 2.) proves this to be wrong.

V

Fig. 2.
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3.5. Example. 1f we choose v first we will need 7 barriers for the remain-
ing graph (compare Example (2.2)), that is we have 8 barriers all in all.
But the 7 barriers shown in Fig. 1 give a f-minimal RCSN.

This example indicates that “local reasoning” is not enough and there-
fore no “good” algorithm exists.

3.6. Problem. Find a good algorithm to determine a f-minimal RCSN for
a given graph G or show that there is none.

3.7. Proposition. An RCD (G, S) is reduced.

-
my——

Proof. The proof is by induction on the number of nodes of G. The ;:?
position is trivial for |V(G)| = 1. For a given (G, S) we can find a total dead
end v as above, (G, S)—v is an RCD, hence reduced by induction. An edge
vw has barriers at v only. Let w, w’ be neighbours of v. Then there is an S-
walk from w to w” in the RCD G—v. This S-walk together with edges w’ v,
vw forms a closed walk which is only separated by the barrier between w’ v
and vw. Hence no barrier is superflous. O

3.8. Corollary. An RbSN is t-reduced if and only if it is an RCD. A f-

reduced RCSN is an RCD. i 144"‘?‘7
T T SSe L .m\m

' Remark. The above proposition does not hold W1th (t-) reduced replaced
by () minimal. Consider the graph of Fig. 3.

Vw < \
ATA < KA

Fig. 3.

Apply (3.4). Before choosing v we have to choose all nodes “on the left” or
all “on the right”. So we can do nothing better than choosing v,, ..., v4 and
go on in an optimal way. The result can be improved by deleting the 4 barriers
of vy, at v, and introducing 3 barriers for vy, at v instead.
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4. Absolutely minimal RCSN’s

It is well-known from graph theory that the minimal number of indepen-
dent (elementary) cycles in a graph with n nodes and m edges is the cycloma-
tic number m—n+ 1. This gives a lower bound for the number of barriers of
an RCSN for some given graph.

4.1. Proposition. Let G be a graph with n nodes and m edges, (G, S) an
RCSN. Then the number of barriers is at least m—n+1.

Proof. We prove more generally by induction on m. If (G, S) is cycle-
separated then there are at least m—n+1 barriers. For m=0 this is true.
For m=1 choose an edge e that is a dead end at v. (G, S)—e is cycle-separa-
ted as well.

Either v has degree one, and then (G, S) —v has at least (m—1)—(n— 1)+
+1 = m—n+1 barriers or e has at least one barrier at v and (G, S)—e has
at least m—7—n+1 barriers. In both cases we are done. O

4.2. Definition. An RCSN (G, S) with G having n nodes and m edges is
called absolutely minimal if its number of barriers ism—n+1.
W. Wimmer has conjectured the following

4.3. Proposition. An RCSN is absolutely minimal if and only if it can
be constructed in the following way. Start with one node and connect new nodes
to the RCSN by at most two edges and in case of two edges separate them by a
barrier in the new node.

Proof. This method obviously gives an absolutely minimal RCSN. On the
other hand given an absolutely minimal RCSN we can find a node v as in
the proof of (4.1). This node must have degree 1 or 2, since otherwise ¢ would
have more than one barrier and (G, S) would have at least (m—1—n+1)+ 2=
= m—n+ 2 barriers. Hence v is a total dead end and we can build up (G, S)—
—v and add v according to the above algorithm. 0O

Remark. The difficulty of constructing a good algorithm for finding an
absolutely minimal RCSN for a given graph is again shown by example
(3.9).

W. Wimmer also conjectured the following

4.4. Corollary. (i) In an absolutely minimal RCSN no node has more than
one barrier and for each edge there is at most one node containing a barrier for it.
In particular each absolutely minimal RCSN is an RCD such that in the corres-
ponding digraph there are never more than two arcs pointing to a node.

(ii) If successive deletion of nodes of degree 1 from a graph finally gives
a graph which has no node of degree 2, then there is no absolutely minimal RCSN
over that graph.

5. Distance-preserving RCSN’s

5.1. Definition. We call an RCSN (G, S) distance-preserving if for any
two nodes v, w there is a shortest path in G that is an S-walk in (G, S).
Wimmer gave the following construction method.
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5.2. Proposition. A t-reduced RCSN is distance-preserving if and only if
it can be constructed in the following way. Start with one node. Then repeatedly
choose a non-empty set of nodes that pairwise have a common neighbour or are
adjacent and add a new node adjacent to all nodes of the set. Separate all edges
at the new node by barriers.

Remark. This method can be combined with that of (4.3) to give a ne-
cessary and sufficient construction method for RCSN’s which are at the
same time distance-preserving and absolutely minimal.

5.3. Example. In (3.3) we desrcibed an algorithm for constructing a -
reduced RCSN that viewed “the other way round” in (3.4) gave an algorithm
to construct a f-reduced RCSN for a given graph. We would like to convert
the algorithm of (5.2) similarly. But the graph of Fig. 4 shows that it is dif-
ficult to find a distance-preserving f-reduced RCSN for a given graph.

Vs

Fig. 4.

Locally it seems to be perfectly all right to choose v as a total dead end since
its neighbours have distance 2 in G—v. But in G—v there is no node with
this property. Had we chosen v,, v, and v;, we would have got a f-reduced
distance-preserving RCSN.
The following two propositions may be of some help in this situation.

One might expect that if there is a distance-preserving RCSN for a gi-
ven graph then any minimal RCSN will be distance-preserving. This is not
true in general. But we have the following result.

5.4. Proposition. Let G be a graph for which a distance-preserving t-redu-
ced RCSN R exists. Then every absolutely minimal RCSN R’ on G is distance-
preserving.

10 ANNALES - Sectio Computatorica — Tomus VII.
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Proof. The proof will be by induction on the number of nodes. Let R
be constructed according to (5.2) and v a total dead end of R’. First we show
that we may assume that v is a total end of R.

W. 1. 0. g. v has degree 2 by (4.3), let w, w’ be the neighbours. We have
three cases:

i) Constructing R according to (5.2) v is added before w and w’. This means
that v is the first node and w, say, the second. We can reverse the order of v
and w in the construction and thus reduce this case to ii).

ii) w is added before v, w’ after v.
We have two subcases:

«) As w’ is added it gets another neighbour x. This either equals w or has a
common neighbour with v, i. e. it is adjacent to w. Therefore we can add
v after w” and have case iii).

B) Asw’is added it gets v as its only neighbour. Hence v is a separating node
for some of the graphs constructed intermediately. Since v is a total dead
end of R’ it is not a separating node of G. Let x be the first node added
such that v does not separate the resulting graph, and let G’ be the graph
x is added to. G’—v has two components C,, C, and x has neighbours in
both. By (5.2) these neighbours have to be w and w’. Hence we can add x
instead of v and v instead of x and again have case iii).

iii) v is added after w and w’.

By construction v is a total dead end of R.
Now R—v is a distance-preserving t-reduced RCSN, R’—v an absolutely
minimal RCSN. By induction R’ —v is distance-preserving. Since v is a total
dead end of R, w and w’ have distance at most 2 in G—v. Hence R’ is distan-
ce-preserving by (5.2). O

Constructing a distance-preserving t-reduced RCSN for a given graph
chordless cycles of length greater 4 can pose a problem. But such a construc-
tion is easy if there is no such cycle. To see this we need a lemma.

5.5. Lemma. Let G be a graph without chordless cycles of length greater
4. Then there is a node v such that any two neighbours of v have distance at most
2in G—-v.

Proof. Suppose the lemma fails. Then a node v has neighbours w, w’ with
distance greater than 2 in G—v. Any path from w to w’ in G—v contains a
chordless path which together with w'vw forms a cycle of length greater
than 4, hence is contains another neighbour of v. Therefore {v} U {y |vy € E(G) A
AY#=wA\y=w'} separates G. Among the separating node sets consisting of
one node, called the centre node, and some of its neighbours choose a set T
with centre node x such that |T|+ |V(C)| is minimal, where C is a compo-
nent of G—T.

i) All nodes of C are adjacent ot x. Choose v to be any of them. Then any
neighbour of v is x or adjacent to x and we are done.
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ii) There is a node v of C not adjacent to x. As above assume that two neigh-
bours w, w” have distance greater than 2 in G—v.

T := {v}U{y|vy€E(G) Ay#w A y=w'} separates w and W’ in G. Observe
that "< TU V(C). W.l.o.g. the component C’ of G—T” containing w does
not contain x. Then it does not contain any node of T either, so C’< C. Thus
T’U V(C’) is a proper subset of TU V(C)since it does not contain x, contra-
dicting the nimimality. Hence we can choosev. O

5.6. Proposition. Let G be a connected graph without chordless cycles of
length greater than 4. Then each distance-preserving t-reduced RCSN on G can
be constructed by the following algorithm, which always terminates. As long as
there is more than one node choose a node v such that for any two neighbours
w, W’ of v the distance of w and W’ in G—v is at most 2. Put barriers between
all edges at v and put G := G—v.

Proof. Since the assumption about G holds for all subgraphs as well there
is always such a node v by (5.5). The result follows by (3.4)and (5.2). O

6. Conclusions

We have seen that a given graph can be converted into an RCD or an
RCSN of various types and how t-reduced, absolutely minimal or distance-
preserving RCSN’s can be constructed. However, no good algorithm for fin-
ding such RCSN’s for a given graph is known.

For practical applications additional considerations have to be made.

E.g. the flow of objects (packets) in the network, which might be dif-
ferent in different parts of it, must be taken into account by putting a mi-
nimal number of barriers into the regions with heavy traffic; also on should
avoid cutting off shortest paths between important nodes. This poses some
further graph theoretic problems — some of them have been solved by
Wimmer [2].

And there is the problem that during operation the network may change
because of breakdowns of some of its components of because of the need to
add new nodes or edges. These questions can also be nicely handled by the
methods presented above (see also [2]).

For the practical implementation of a method to construct an RCD
for a given network and the corresponding algorithms for buffer manage-
ment, flow control, routing, network changements etc. see [2], too.
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