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1. The X -spaces are treated e.g. in the book by A. M. Garsia [1]. Let
XelLY(Q, oA, P) be a random variable defined on the probability space
(L2, o, P) and consider the regular martingale

Xn = E(XI(Fn)’ fl20,

where {(F,}, n=0, is an increasing sequence of o-fields of events such that
Femel O F = et
n=0

We suppose that X, = 0 a.s. We denote by d, = 0, d,, d,, . . . the difference
sequence corresponding to the martingale (X, (F,).
For lsps + oo set

= {y: 'VEL E, (|X Xn—ll I(}n)SE(yl(?n) a.s., vn=l}.
We say that X € X, if the set I'{ is not empty and in this case we let
IXllx, = inf [yl

I
‘VEX

It easily can be seen that ||-||x, is a semi-norm on X . The space X.. is the
well-known BMO,-space.

In [2] we generalized this notion in the following way. Consider a pair
(P, P) of conjugate Young functions and put

rQ = {y:yel®, E(|X—X,.\||F)=E(y|Fp)a s, ¥n=1}.
We say that X € X, if the set I'(® is not empty. In this case we let

I Xllzp = inf [yle,
7@(’?)
where ||-|ls denotes the Luxemburg norm in the Orlicz space L®. For the

definition of the Young functions, Orlicz spaces and Luxemburg norms we
refer to [3] and [4]. We easily prove that || - ||z, is a semi-norm on Xo.
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We say that the random variable X belongs to the Hardy space %o
if
o 1/
§ =S(X)= [ 3 d,z] 2eLo,
i=1

or in other words ||S|le < + . In this case we write || X|lz, = [|S]e.

Since the Young functions @ cannot be linear, the space L, is not con-
tained amongst the Orlicz spaces. Therefore we define the Hardy space %,
as the set of all the random variables X for which ||S||; < + . In this case
welet | X[la, = Sl ,

We recall the definition of the power of a Young function @. Let ¢(x) be
the right hand side derivative of @. Then the quantity

x>0 p(x)

is called the power of @. The finiteness of p is equivalent to say that @ satis-
fies the so called 4,-condition. We define similarly the power ¢ of the conju-
gate Young function ¥(x).
The inequality of Burkholder-Davis-Gundy says that if p is finite then
X¢€dbo if and only if X* = sug | X, €L® (cf. [5]). Also, Davis’ inequality
n=

states that X ¢, if and only if X*¢€ L.
In paper [2] we proved if both @ and ¥ have finite power then X¢ X,

is equivalent to the fact that X¢€ s, or in other words X*¢L®. For the
2 q
pair L, X of conjugate Young functions, where p>1 and p~1+¢~1=1

P

this fact has essentially been established by Garsia in [1] (Theorem I1I. 5.2.).
The space X, is less studied. We only know that 76, c X,. In fact, if

X*¢L1 then

E(1X ~ X oo | | F )= EQX*|GFy), n=1.

Consequently, I')) is not empty, since X*€ L1and so 2X*¢cI'D. The reverse
implication, i.e. X, c 7, is false. Here is a counterexample. Consider a non-
negative random variable X belonging to L,. Let X, = E(X|(F,), n=0
be the corresponding martingale. Also let X=X —X,, n=0. Then (X, (7,)
is also a martingale. Suppose we have chosen such an X that the limit X — X,
of X,—X, does not belong to 7, but at the same time |X,, ,—X,|=I
a.s. We show that X — X, belongs to X,. In fact,

E(1X = Xo= X7 |Fn) = E(|X = Xy || F) = E(|1X = Xa| | Fr) +
+ X=X | < EX|F) + EQX|(Fo) + | X 5= Xy | <E@X + 1/F),

which shows that X — X,¢ 7, and that X — X € X, (cf. e.g. [1], p. 122.).
In what follows we shall use a maximal inequality which is proved in
[2]. We state it in the form of the following
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Theorem 1. Let (X, (F,) be a martingale and let y€ L* be a random variab-
le such that for every n=1 we have

E(1X~X,—1| |F)=EQ|F,) as.
Then for arbitrary g>a=>0 we have

B—)E(x(X%=p))=E(yx(X*=w)).
Here y(A) denotes the indicator function of the event A.

2. About the behaviour of the random variables belonging to X, we
can prove the following

Theorem 2. If X<c X, then X* is a.s. finite. Moreover, for arbitrary A>0
we have the inequality
AP(X* =2)=2| Xz,

Proof. We use the inequality of Theorem 1. According to this if >« >0
and if X€X, then with arbitrary y€I') we have

(B —)E(x(X*=B)) = E(yx(X*=)).
Choose 8 = 2a. Then
aP(X*=2a)=<E(y).
Since yeI'® is arbitrary from this we get
aP(X* = 20) = [| Xz,
or, in other words
20P(X* = 20) = 2|| X]| %,
Taking 2 = 2« we obtain our inequality.
Further, since
P(X* = 4+ ) = lim P(X*=)),
A

—+ 4 oo
the inequality just proved shows that
P(X* = + «)=2||X||%, lim 1 0.
Avto )

This means that P(X*<+ <) =1. O

3. When at least one of @ and ¥ have no finite power then we cannot
prove the equivalence of the norms ||-|x, and ||-|lz,. Assuming only the

finiteness of the power p of @ we are able to prove the validity of the follo-
wing inequality: if X¢ Xy, P(X = 0)<1, then with arbitrary constants
c¢>1and p>1we have

Xx
0—"””“(”’(?’( 0A—"— | Xz, )))S"
c—1
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Here A = A(c) is the number for which

p(c) = Ap(t)
is satisfied for every ¢=0.

In these considerations the Young function @ is ,,far” from the linear
function. Namely, @(x)/x tends increasingly to + e as x + + . So, it is of
interest to consider separately the case of the linear function, too. In analogy
with the classical result of Doob stating that Xe7, whenever X€LlogL
we can deduce the following

Theorem 3. Suppose that X € Xq, where @(x) = x log*x. Then Xedb,
and we have

12e

E(Xp)=——

€+ 1X 1210+ < ) 108 (€ + X 2 10g2 )
Proof. For the proof we use the inequality of Theorem 1. Choosing
B = 20 we get

aE(x(xt = 20)) = E(yx(x3 =),
where y€I'®) is arbitrary. Multiply this inequality by 1/« and integrate
with respect to « on the interval [1, + o). Then

* +
E[[ );" -1 ] ]sE(y log* X%),

or, in other words,

F(eluy—n—)E[[ - l]+]SE[ —rR '°g+x'*"]’

Using the elementary inequality

alog*bsalog+a+£
e

which is valid for arbitrary a=0 and b=0 we obtain on the right-hand side

* +
| [ e N
max (¢, [lylle) 2 max (e, ||y|ls) max (e, [|ylle)
Xx Y
emax(e, [lyle) max(e, [ylls)

log* max (¢, uyuds)].

Note that

X (Xr )
> 5[‘2—“] 1
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From this and from the above inequlity

I E(X*)=<2+ I E(X*) +
2 max (e, ||ylo) (X3 emax (e, |yle) (X3
E(y) log max (e, ||ylo)

max (¢, [yle)

since
log* max (e, [|y|le) = log max (e, |[ll)-
This implies that
e—2
2—815()(:‘.‘)s 2 max (e, |7lle) + E(y) log max (e, [|7[l)-

Now we show that

E(y)=4llylo-
In fact, in case of any Young function @ we have for every x>0 the inequality

D(x) = (X — Xo)P(Xo)s

where x,>0 satisfies g(x,)>0. Here, as usual, ¢ denotes the right-hand side
derivative of @. Consequently, for arbitrary Y €L® such that P(Y = 0)<0

we see that
IZE[qj[ul—;',ulI]]z‘p(”")E[[ nlenlgo -}

Using the inequality x=(x—x,)* +x, from the preceding inequality we get

oL,
Yle)  @(xo)

or, in other words
1

@(xo)

Now, turning to our case, we have g(x) = 1+log x, if x=1 and ¢(x) = O if
x<1. Consequently, choosing x, = e we get ¢(x,) = 1+loge = 2. So,

E(y)= [é + e]l]y||¢s4 max (e, [[yllo).

E(Y)) s[ +xo]uvn.».

Comparing this with the inequality above we get
e—2
—5p [(Xn)=6max (e, ly|le) log max (e lI7lle),

(3
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which implies the inequality
12¢
B =7 (e 1X1) g e+ X1,

This proves the assertion. 0O

Remark. &(x) = x log*x will be a Young function only in the case when
we define its right hand side derivative g(x) to be right continuous at x = 1.
This means that ¢(+ 1) must be equal to 1.
As usual, we say that X¢L log L if E(]X| log*|X|)< + . Consider the set

Iyt = {yryeLlog L, E(|X - Xy | | F) ZEG)| Fo) a.s. ¥z 1),
Then '} log* x) j5 a subset of I’g’(‘ log* 3 and we have

17]lx 10g+ x=max (1, E(y log* »))-

In fact, if peIyXle*X  then E(ylog*y)<+ . Consequently, if
E(ylog*y)=1 then by the convexity of (x) = x log*x,

1
E[ Y ogt—YF ]s E(ylog*y) = 1.
E(ylog*y) = E(ylog*y)) E(ylog*y)
If, conversely, E(y log*y)=1, then trivially ||y||x1og+ x=1. Therefore,
17llx 10g* x=max (1, E(ylog* 9)). O

It seems to be interesting to deduce an inequality, like the preceding one
for E(X?) in case of the class '} 16" %), It can be shown that in this case the
inequality to be proved is simpler than that of the preceding assertion.

Theorem 4. Let X be a random variable and suppose that the set I\ 1og* %)
defined by the formula

ixloe'x = {y:yeLlog L, E(| X — X, | |F)=E(y|Fp) a.s. ¥n=1}.
is not empty. Then X € 76, and we have

=2 1+ inf  E(ylog*y).
2e yep’)({x log* x)

E(X}=

Proof. Again, we shall use the inequality
(B - )E(x(X% = B)) = E(y2(X} =)
and we choose 8 = 2a. Here y€I"}(x1°¢* ) is arbitrary. Then

ocE[ x[-);—’a:za]JsE(yx(X,"{za)).

Integrate this with respect to the measure da/a on the interval [1, +<).
We then get

% + *
E[[ );" - 1] ]sE(y log* X,",‘)sE[y log* y+X-—3-].
e
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From this

e—2
2e

E(X¥)=1+E(y log* y)

and finally
2

E(X%)=

e ’(x log+ x)
yél"x

This proves the assertion. O
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