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Abstract. In this paper we present a method for approximating the solu-
tion of the system of nonlinear ordinary differential equations y* = fi(x, , 2),
Z = f(x, ¥, 2) with y(x,) = ¥, and 2(x,) = 2, adopting spline functions which
are not necessarily polynomial splines. It is a one-step method O(h2+°) in
Y(x), ¥'(x), ¥y (x), 2(x), Z(x) and 2”(x) where O<a=1, assuming that f;,
f.€C'a, b].

Description of the method
Consider the system of ordinary differential equations
(1 Y =hx% 9, 2), Y(X) = Yo
@) 2 =[x, ¥, 2), x) =2,

where f;, f,€ CY([0,1]X R?).
Let 4 be the partition

4:0 = Xg<Xy< ... <Xy<Xpp1<...<X, = 1,
where Xgs1—X,=handk =0,1. ..., n-1.

Let L, and L, be the Lipschitz constants satisfied by the functions f;, f1
and f;, f, respectively, i.e.,

3) If?)(x»J’nzl)’fﬂ)(xr}’z»zz)] =L{In-».|l+la-2al}, j=0,1
and
@) |f§j)(x’}’1»Zl)"‘fgj)(xr)’m%” =L{|)—ya| + |Zl_22|}7 j=0,1

for all (x, y;, 2,) and (x, ¥, 2,) in the domain of definition of f;, f1, f, and f3.
Then we define the spline functions approximating y(x) and z(x) by

S4(x) and S,(x) by:
(5) SAx) = Sx), X =x=X,4,,k=0,1,...,n—1
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and
(6) :S.A(X) = §k(X), xksxsxk.'.l,k = 0, l, ...,ﬂ—l.
Both S (x) and S(x) are given by

(7 Si(x) = S (X)) + ffl[t’ y¥(), z%(@®)]dt, k=0,1,...,n—1,

Xk

where

YEWO) = Spoa(xp)) + FifXio Sg—1(%0)s Sk (XMt —x,) +
® T Sma) Secar)E -0,

Z4(l) = Spma(%) + ol X Skma (s Sp—a (X} — %) +
) + —;'f 2% Sk=1(X)y Ska (It — %)%, X =t=X=Xp 4,
(10) S_1(%o) = Yo ‘—S-l(xo) =2
and
) 5u9 = S+ [ ult 20, 220)

X

It is clear by the construction, that S, (x) and S(x)€ C[0, 1].

It should be noted that we use the Lipschitz conditions onf, and f, to
guarantee the existence of a unique solution to the problem (1)—(2).

We now discuss the convergence of these approximants.

For all x€[x,, x,+,), k = 0,1. .... n—1 the exact solutions of (1) and
(2) can be written — by using Taylor’s expansion — in the forms:

(12) ¥ =+ [ Al 0,201,
Xk
where
(13) W) = yet yilt—x)+ %y"(sk)(t— x),
(14) 2(t) = zk+z,:<t—x,,>+%z"(m)(t—x,,)*,

Exs Mk € (Xhs Xy41)
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and
(15) 2 =2+ [ Flt, 20121
Xk

We now estimate |y(x)—sy(x)| where x€[x, x;].
Using (7—10), (12— 14) and the Lipschitz condition (3), we get

X

[y(x) = so(x)| = f | F1lt, yo(t), 2(8)] — filt, Y5 (1), 28()]| dt=

Xo

(16) =Ly [ Ay -2 + 20~ O]} .

Now let
U = |y)—ys(t)| and v = [z(t)—23(t)].

Then

(17) U =1y €55 | lt=xol?
and

(18) V=l (0% ||t

Thus using (16), (17) and (18) we get:

(19) [y — 50| = Lyfwly", -+ 0le”, h)}sngh%(n) = o(ts+e),

where w(y”, h) and w(2”, h) are the moduli of continuity of the functions

y” and z” respectively, and
(20) w(h) = max {o(y”, h), o2”, h)}.
We now estimate |y’(x)—2'(x)|.
Using (7—10), (12— 14) and the Lipschitz condition (3) we get

l ’7 27 77 r7
|y’(x)—s{)(x)|s?Ll{|y &) —Yo | + 127" (no) — 25" |} X — X, | 2=

@1) s%Ll{w(y", By + oz’ hjh2 =

<L, h?o(h) = O(h2+9).
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We also estimate |y”(x)—sg(x)|. Thus using (7—10), (12—14) and the
Lipschitz condition (3) we get

|y (x) — 56" ()] S%Lx{l}'"(éo)—yé’l + 12" (no) — 25" |} x — xo| 2=
= L ?a(h) = O(h2+).

By the same way, using (8—11), (13— 15) and employing the Lipschitz
condition (4), it can be shown that

22)

(23) |20)— 5o0)| s-;_L,n%(h) = O(13+9),
(24) |Z(x)g —So(x)| = Lah?ex(h) = O(h2+*),
and

(25) |2/(x) —55'(%)| = LyfiPaXh) = O(H2+9).

Now, we are going to consider the general subinterval [x,, X;4+,], kK = 1,
2,...,n—1,

Using (7—9), (12— 14) and the Lipschitz condition (3), we get
(26) |9(x) —$,(X)| = | Yk — Se-2() | + Lo f {70 —yE@®| + |2(t)—2%(®)| } at.
Xg

Now let
U, = |y —y¥@®|.
Then
Uy =|Yic—= k1| + ¥k — FilXio Si—1(Xi)s S—a (i} [£— 2, | +

(27) + —;_ly (&) — T 1%k Ska(Xi)s Sx—a (X} | | — %, |2

Using the fact that s4(x)€ C[0, 1], 54(x)€ C[0, 1] and the notations
e(x) = [Y(x)—s(x)],
ex) = |yi— s
éx) = |2()—5x)],
e(x) = |z —5(x)|,
and if we let
T = |y —Sil%i Sia(6), Se—a (i},

T = Ly{|yx— Sx—1(x0) | + |25 —S—1(x:) |},

then
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i. e.
(29) T <Ly(e,+&),
and if we let
Ty = |y"" (&) — f1{Xp> Sk—a(X), Se—1(Xe)} |,

then

Ty=y" (&) = Ye' | + |1 Yio 2) — F 1%k Sk=a(Xi)s Sp— 1 (Xi)}»
i. e.
(30) TIS(D(J”,, h)+L1(ek+ék)'

Now, using (28 — 30) in the inequality (27), we get
_ 1 ’ _
(1)  Uyse,+Ly(e,+e,)|t—x, +-:—2—{w(y » h)+ Ly(e, + &)}t —x, |2
Similarly, let

Vi = l2dt)—Z¢ @)
Then, using (28) and the Lipschitz condition (4), we get

(32)  Vise+Ly(ext+e)|t—x |+ %{‘0(2"’ h) + Ly(e, + )} |t —x, |2
Using (26), (28), (31) and (32) we can easily get

(33) e(x)seku+con>+cohz,,+%1qn3w(n),

wherec, = L, + %L} +%L1Lz is a constant independent of h and h<1.

Similarly using (13—15), (8, 9, 11) and the Lipschitz conditions (3—4)
we can easily see that
(34) B =21+ ) + ey +— LalPolh),
2

where ¢, = L, + ?Lg %LILz is a constant independent of h and h<1.

If we use the matrix notations
E(x) = (ex) &))",
Ek=(ekék)T, k=0,l,...,ﬂ—l,
then the estimations (33) and (34) can be written in the form

S PRSON Gt )
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i. e.
(35) E(x)=(I+hA)E, + %h"'w(h) B,

where
(i) ool
GG L,
and [ is the identity matrix of order 2.

At this point, we use the following definition of the matrix norm. Let
7 = [t;,] be an m X n matrix, then we define

n
|7l = max 21 It! -
i j=
Using this definition, we get
(36) |E.| = max(e,e,), k=0,1,...,n—1.

Now, since (35) is valid for all x€[x,, x,4,], k =0, 1, ..., n—1, the fol-
lowing inequalities hold:

IEQO] = (1+h|| AIDIE +%h3w(h) 1Bll,
(1+ A AIDIE = (1 + Il AIIE;-.[ + %h"w(h)(l +hl|ADIB,

(L +RIADAIEg -]l = (1 + | Al Ex—all + %h“’w(h)(l +h| Al Bl

(1+ R AIYIE, || = (L + Rl AN+ HEo | + %h“'w(h)(l + h||Al)“IBJl.

Adding L.H.S. and R.H.S. in these inequalities and noting that ¢, = 0 we get

37 E(x) =c,h*w(h),

where ¢, = %A“ ”‘%" is a constant independent of h and h< 1.
By the definition (36), it follows that

(38) e(x) =cyh%w(h) = O(h%+°)

and

(39) e(x) = ch%w(h) = O(h2+9).

We now estimate |y’(x)—sy(x)|. For this purpose we use equations
(7—-9), (12— 14) and the Lipschitz conditions (3 —4) and get

(40) e'(x) = ¥/ ()~ 5i0)| = cale+ &)+ Lyhaolh),
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where ¢; = %Lﬁ + % L,L,+ L, is a constant independent of hand h<17.

Using (38) and (39) inequality (40) becomes
41) ¢ (x)=chPw(h) = O(h%+9),
where ¢, = 2c,¢3+ L, is a constant independent of n and h<1.

In a similar manner we estimate |2’(x)—5§;(x)|.

From equations (8—11), (13—15) and using the Lipschitz conditions
(3—4) it follows that

(42) e'(x) = [2'(x) - 5ix)| = c5(ex + ) + Loholh),
where ¢; = %Lg +% L,L,+L, isa constantindependent of hand h<1.

Substituting inequalities (38) and (39) into inequality (42) we get:
43) §'(x) =cgh?w(h) = O(h?+°),
where ¢g = 2¢,c5+ L, is a constant independent of h and h<1.

We are going to estimate |y”(x)—s;’(x)| and |2”(x)—S§,"’(x)|, where we
are using the following definitions for s;’(x) and §5,”’(x):

(44) 5K(x) = fifx, si(x), (%)}
and
(45) 51'(x) = fa{x, 5,(x), S(x)}-

Now, using (1) and (44) we get

¢'(x) = |y () —sk(®)| = [fi(x, 3, 2) — fi{x, 8,00 $(0)}-
Using (38) and (39) we get
(46) "(X) = c,iw(h) = O(h2+°),

where ¢, = 2L,c, is a constant independent of # and h<1.
Similarly, it can be shown that
47) () = [27(0— 5" ()] s cghitel) = O(R2+9),

where ¢ = 2L,¢, is a constant independent of hand h<1.
Thus, we have proved the following

Theorem. Let s,(x) and S4(x) be the approximate solutions to problem
(1)—(2) given by equations (5—11), and let f;, fo€ c*([x,, X,] X R?).
Then, for all x € [x,, x,] we have

17(x) —56(x)| sélqhaw(h),
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|YD(x) = sgM(x)| = LyPeolh), j = 1,2,

|2(x) — s*(x)| = —;—Lzhzco(h)

and
|20(x) — §P(x)| = Lyh(h), j = 1,2,
and for all x€[x,, X, 4+1], kK = 1(1)n—1 we have
| YP(x) = 5i(x)| = coheo(h)
and
|20x) — $x)| = exghPeo(h),
wherej = 0, 1 and 2, ¢, = max (c,, ¢4 ¢;) and ¢,;, = max (Cy, Cq, Cg)-

Numerical example

Consider the following system of differential equations
Y =y+z—x—x2—e¥,
Z=2y4+22-2e-2x2-2,9(0) =1, 20) = 2.

The method is tested using this example, in the interval [0, 1] with step
size h = 0.1.
The analytical solution is

y(X) = e¥+x
and
2(x) = e+ x2+1.

The tabuleted results, appearing in the following table, are evaluated at
the point x = 0.25.
absolute error

exact value approximate value

y 1.5340254 1.533906117 0.000119283
y 2.284025329 2.283397416 0.000627913
Yy’ 1.284025155 1.282951722 0.001073433
4 2.7112212 2.710982672 0.000238528
4 3.797442367 3.796186541 0.001255826

” 8.594884559 8.59273769 0.002146869
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