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Abstract. In this paper a solution of a Riemann boundary value problem
is studied. It is shown that under certain conditions the problem possesses a
solution in the class Z,,.

Salaev [7] obtained necessary and sufficient conditions for the conti-
nuity of a singular integral with continuous density where the contour of
integration are piece-wise smooth curves without cusp points. Papers [2—6]
introduce a new class of functions which are used in the study of Riemann
boundary value problem and characteristic singular integral equations on
some classes of curves which are more general than class of piece-wise smooth
curves without cusp points.

Let p be a closed Jordan rectifiable curve. The interior of y is denoted by
D+, and the exterior of y by D~. Following Salaev [8], we have,

yot) = {y€y:|y—1| =8} ,6=0,

048) = mes y4(t) ,6 >0,

0,8) = sup O5) ,0=0,
tey

If 8€(0, d] where d = diam y = sup |t —z| then the functions () are
t,z€
non decreasing, lim @(8) = 0 and @(6)23.
6-+0
Consider the class of curves, for which @(8)~é (i.e. there exists a con-

stant ¢ such that ©(8) = cé).

Salaev V. V. and Tokov A. O. [9] obtained the following result. Let
f¢C, (C, is the class of continuous functions defined on y). Then for the conti-
nuity, up to contour, of the integral of Cauchy type

B(z) = —— —tfft)z dt,
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it is necessarry and sufficient that the integral

ff(&) 10 44

vIvet)

is convergent uniformly with respect to £€y ase—~0. This condition is called
condition 1.

Now we reformulate the main results [3, 6] for the class of curves which
satisfy the condition ©(8)~ é.

Let us denote by S, the set of all functions f¢S, satisfying condition I.
As in [6] let us consider the metric characteristic function of f€S,;

246)

Q) =29 sup

%) = sup ff(&) f® d‘

v()

For fe Cy it was introduced in [1] the characteristic function

wyd = dsup —-2 o (1)

=0

where

w}(b) = sup |f(t)—ft,)|-
lti—t2| =<6
Theorem 1 [3]). Let ©(8)~ 6, f€S,, Then for the singular integral

1) =iy = [ LTV rais 0 1cr,

the following two inequalities are satisfied

3

w;(a)sclg (&) +w(e)+5 f K’;(—;ldr],

&

o= s [ f 75
) 8 3

Jor any € (0, d], and for ¢ >0 depending only on .

Let w be any function of continuity modules type. We introduce a class
of functions

and

= {f€S: wy(8) = O(W(3)), 2,(8) = O(W())}-
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with norm
©) | sup 2O
+ sup 19
Iz, = Ifllc, sup — 7 (6) sup W)
Itisclear that Z,, is a B-space.

Similarly the Plemeti-Prevolov theorem has been obtained for the
class Z,, in the following form.

Theorem 2 [3]. Let w be any function such that
d

5 [ € 4 = o(w(s)).
aféz £ = 0(w(®)

Then the operator Af = f maps Z,, to Z,, and is bounded.

Now we reformulate the results of papers [4, 5], to solve the Riemann
boundary value problem.

Theorem 3 [5]. Let @(a)~a G, g:y—~C, G(t) =0, V tey,

WG(E) Ln-24 d§<+oo,g€S
3 3

Then the general solution of the Riemann boundary value problem, for the deter-
mination of a piece-wise holomorphic functions ®(2), which tends to zero at in-
finity under the boundary condition

() o (t) = GOP~(t)+8(1), tey
has the form

_ X@ 40
20 =32 [ bt X P,

where
er@ , 2€ D+’

X@R) = {z-XeP@, 2eD-,
o = ! f LG 6@) 4

2mi T—2
Y

P._, is a polynomial of degree not higher than x—1, and x is the index of the
problem defined by

. 1
3) x = ind, G = —— f d Ln G(e).

k4
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We introduce here a class of functions

H, = {f€C,: wi(3) = 0(w(8))}
with the norm

1ty = 11, + sup f(‘a)’

It is clear that H,, is B-space.

Theorem 4. Let O(8)~ 6, a(t), b(t)€ H;, a(t) (a(t) 2b(t));é0 Viey, feZ,,
where

d

MO 1024 e o)), 8 [ € e = ogws
off n =g =0(m9), [ 2 2dz = (),

é
d

s [ € g — ow(s)).
J&Z £ = 0(())

Then for x=0 the general solution of the dominant equation

w [ PE)-20) ,, _
@ o+ ) [ FE=0a = 0, tey

is contained in the class Z,, and has form

o)~ JO___ b0

X*(OPc,(1) —

©) - a(t) a(t) — 2b(t)
_bX*() f[ f© 1o d
an-20) in ) | a@X*@)  a®X*@)

where X(2) and x represent the canonical solution and the index as in equation
(2), with

a(t) — 2b(f) an
a(t)
For x<0, the necessary and sufficient condition for solving equation (4) is

f&d;::o,k:o,l,...,—x-l.
a(g)X*(¢)

G(t) = d ®=0.

If the conditions of solubility are satzsfzed then the solution of the equation (4)
is given by formula (5) where P,_,(t) =
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Proof. Let @ Z,, be the solution of equation (4).
We introduce the function

@(z)g ._i_-_ &dé’ ZQ Vs
2mi E—2

and by using the Plemela-Sokhotski formulae we have

1 D(£) — D(f)
B+ (1) = 2m_f ~d +0()

k4

iy~ L [ 206)-20
(p(t)'zm‘f PR

Y
by substituting in (4) we obtain

a@t)(@* () — D) + 26D (t) = f(¥),

or

een . GO=200) o f)
(6) H(t) = a0 d-(f)+ 0"

Thus, the solution @ of equation (4) is the solution @ of the boundary
value problem (6). [t is easy to see that if @ is the solution of equation (6),
then the function @(f) = @*(t)—D~(t) is the solution of equation (4) and is
contained in class Z,,. I. e. the solution of equation (4) is equivalent to the
solution of boundary value problem (6).

Then for x=0 the general solution of problem (6) has the form

_XQ) [ f© . _d
) = 2ni | X0 - + X(Qs-1(2)

where X is the canonical solution of the homogeneous problem (6)

[i. e. Xt(t) = %Mx_(t) , and Q,_, is an arbitrary polynomial of deg-
a
ree not higher than x—1 (for x = 0, P,_,(2) = 0).

Then the solution @ of equation (4) takes the form
& S )
aOXHE)  aOX*O) Je—t

fx) __ J®
a@X*(E)  aOX*@)

(1) = B+()— (1) = x+<t)[ 2:”. f

1 . ey
b X000 X0 /{
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X000 = OO [ (T8

2mi aX*E)
___fo O Loy
a(t)X*(t) ] a(t) +(X* () — X~ (0)Qe-1(0)-
Then
X0 = X1 9O =20
X+t -X-() = X (t)[l ) -2 xe0,
Finally

B(t) = @& ) X*(l) /‘ [ e
at)  at)—26() a(€)X*()

SOy b0x*0
a®)X*(@) Je—t  a(t)—20(t)
where P,_,(f) = —2Q,_,(f) is an arbitrary polynomial of degree not higher

than x—1.
By the same way we can find the result in the case x<0. O

Consider now the equation adjoint to the dominant equation which has
the form

M @o-20p0-— [ ""i’ POHD g0, tey

Py_y(0),

7
where a(t), b(f), ¢(t) satisfy the conditions of Theorem 4.

Theorem 5. Let the functions a(t), b(t), q(t) satisfy the conditions of Theorem
4. Then for x =<0, the general solution of equation (7) is contained in the class Z
and has the form

ol = 201 f[ Mae) b de
a) wi J U(@o-20@)X @) (@0-200)X: () Je—t

LO (IR TSN
a0 —20(0) a)

where X,(2) represents the canonical solution of the homogeneous Riemann bo-
undary value problem with the coefficient

G(t) = &
a(t)— 2b(t)’

and P;_, is an arbitrary polynomial of degree not higher than 71 —x.

®)
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For x>0, the necessary and sufficient condition for which the solution of
equation (5) belongsto Z ,, is:

9" dg=0,k=0,1,...,x—1.
© J (@@ -20)X7 ) FEREED D

If the conditions of solubility are satisfied, the solution of equation (7) is given

by formula (8), where P,_,(f) = 0.

Proof. For x=0, let ¥(f) be the solution of equation (7) from class Z,,.
Then [4] the function b(&) P(§)€Z,, and hence for the function

vo= b [ LGEGI

2mi £E—2

?
in accordance with the Plemela-Sokhotski formulae we found

wi = o1 [HOTOZ00 4w,

2 i
¥

w(t) = fb(g) E{GRLUELUFN

2w i E—t
Then
(10) bt) P(t) = PH(Et) -2 (f).
From (7) we have
(11) (a(t) —20(t)) ¥(t) — 22 (t) = q(0).

Then we obtain that

__ 2y q(t)
¥ = a(t) — 2b(t) * a(t)—2b(f)

Then from (10) we have

OPO) DO _ _ guiy g
a(f)—2b(t)  a(t)— 2b(t)

or
oA _ W 2b(%) bt)qlt) _
=¥ (t)[ a(t) — 2b(t) * 1J+ a(t) — 2b(f)
___a - b(t) ¢(t)
a(t)—2b() i+ a(t)—2b(t)
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Thus, the solutions ¥ of equation (7) is the solution ¥(2) of the boundary va-
lue problem

oy = — 2O g, _OIO
a(f) — 2b(¢) a(f) —2b(t)

The converse is also true from the following. Let ¥(2) be the solution of
problem (12). Then

X,2) e de
b4 = 1 1-x
@ = i f (@@ - 2@ -z D=4

It is required only to prove that the function

PP+ () — T (f)

(12)

belongs to Z,,,.
We have (see the proof of Theorem 4)

X£0-X0 be) q(e)
vt = -
® f [ (@) —26E) X7 @)

3 b(t) q(t) dg P — X- _ b g®)
O MR ] KO- XTOWu-0 + g M

Then from the conditions of this theorem and from Lemma 1 of [4], we can
see that

(13)

bhet) .,
a(t)y—26(t) "
To prove that (X;(f)— X7 () Q_«(f)€Z,, it is sufficient to prove that
X () - X7 (O€Z,,
From the definition of the canonical function X, we have

rt¢
Xt =e 1 (),
where

o= | ul [a(,;"’;,,(,)]] oo L [0,

2mi T—2
Y

Then we make an estimate like Zygmund estimation [8].

6w d
wx,+(8)=wr+(§)= c[ / E%Z)_dy +6 f er;,.; » dy]
0 ]
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sc[jm—y(zldy+6jw—-;(zy—)dy].

It is easy to see that
wy(8)= const (w,(8)+w,(8))= const A(9).
Then

Wwx,+(8) = const [ f —%—y(’l)—dy +0 f i}(l—fldy].
0

Thus X} ¢H;, where

é d

- 8] 2()
@) = [ —dy+d | —dy.
f y of y

0
But (see [3]) H,c Z3, if

[

a0 = [ £V,

0

[([ 5o -

sc[ji}g—)ln%ddy+bf%z)—dy]scw(8),
0 3

and since

then X} €Z,.
By the same way we can prove that

X7 €z,
Finally we prove that

X+ - X1 @) f[ b(E) 4() _ b(t) q(t) ) de
22i ) L(@@-2@)Xi@©)  (00)-20) X7 Je-t
Since

609 .7  ana
a(ty—26(t) "

4 ANNALES - Sectio Computatorica — Tomus VII.

we
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] d
X;f(t)er}'—(;')-dy+6f)'y—(Z)dy,
0 8

then (since X *(f)=0 and continuous) we find that

é d
1 () A(y)
H | —=Z2dy+6 | —Zdy.
)<+(t)E of y y+j » Y

Therefore, from Lemma 1 [4]

b(t) ¢(t) €z,
(a(t) - 26(H)X * (1)

Then from Theorem 2

/‘ [ b(g) (&) _ b(#) q(t) L4
(a®)-26()) X*(¢)  (al)—26(H)X* (1) ) £t

o (v Ot {r=rva eyl OO

Thus
4 d
y y
Y H

end by applying Lemma 1 [4] we obtain the result. Therefore ¥¢€Z,,.
From (13) we obtain that

X{@O—-Xr@) = %%Xf(t), and ¥ takes the form (8).

By the same way we can prove the same result when x=0. O
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