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Abstract. In this paper a new spline interpolational method is presented
in the LP-space. For the construction of the approximating spline function
integral meanvalues instead of function values have been used. The order
of approximation — which is the best possible — is expressed by the LP-mo-
dulus of continuity of the LP-function to be approximated.

The approximation of differentiable functions and their derivatives by
means of interpolating splines on equidistant subdivisions in the sense of
LP-metric (1=p<<) has been considered by several authors (see e.g. [2],
[3], [4), [5], [6])- The common nature of these methods is that on one side,
they can be used either on a finite interval, or for periodic functions only, on
the other hand, the functions to be approximated cannot be arbitrary in L?,
namely, function values and even differentiability properties are used.
Here we present a spline interpolational method in LP(a, b), where (a, b)
can be either finite, or the whole real line. For the construction of the app-
roximating spline function we use integral mean values instead of function
values, and the method gives the same order of approximation expressed by
the LP-modulus of continuity for any LP-function, which is the best possible
one (see [8]). Concerning the main ideas see [7], [9].

In what follows p is a fixed real number with 1 =p <<, and LP denotes
LP(a, b) for either (a, b) is a finite interval on the real line, or (a, b) is the whole
real line. In the finite case all functions in LP are supposed to be extended
periodically to the whole line. For any integer r=0 the spaceW, consists of
all r-times differentiable functions with an r-th derivative belonging to L.
The LP-modulus of continuity w,(f, h), for any fin LP and r=0 integer, is
defined as usually (see e.g. [2], [3])-

For the estimations we shall make use of the following theorem, which
is a modification of a theorem in [2] and can be proved similarly.

Theorem 1. Let I" be an arbitrary set and L,: LP—LP for any y in I, uni-
Jormly bounded linear operators, for which there exists a nonnegative function
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a:I'~R such that a(y)=1, further there exists an integer r=1 and a constant
¢=>0 for which we have whenever f is in W¢,

ILAS) = Fllp=c - aIfOll-

Then there exists a constant d >0 such that for all f in LP we have

1
ILy() — fll,=<d - o (f,a()7),.

Proof. To prove this theorem we use the following result: if f belongs to
L?, h=0 and r=1 is an integer, then there exist constants c,, d, and a func-
tion f, , in W}, such that

”f_ fr,h”pS - wr(f,h)p

I ullp=dr- bt (R, (E = 1,2, ....,7).

The proof of this theorem can be found in [4] under the assumption that f
is bounded, but it is easy to see, that the construction in [4] — which de-
pends on the use of the modified Steklov-transform — works well even if f
is unbounded (see also [6]). We note that we shall use this result only in the
case r = 2, i = 2 for which the corresponding statement can be found also
in [1].

and

1
Let h = a(y)™, then h=a(y) and we have

"L)'(f)—f“ps IlLY(f)— L)’(fr, h)“p+ “L)'(fr, h)_fr, h”p+ ”fr, h—
—~lp=KIf =, allp+ ¢ aSDullp+ 1, = Fllp=(K+ 1)llfl—

—fr, h"p+c°a(7)'dr'h-r'wr(f’ h)pS[(K+ ])Cr+c'dr]'wr(f’ a(y)T)pr

where K is a common bound for the operators L,. Hence the theorem is pro-
ved. O

Let h>0 and {t,} be a subdivision of (a, b) withf,,, —f,=h. In the finite
case we suppose that the number of £, ’s is finite, and in all cases (a, b) =

= L]{[tk’ tk+1]'
For all x in LP we define

and
1 1 1
SH(X)() = ¥+ W Ay, - (t—t,)— m Ayt —1)?— F(t — )],

whenever ¢ is in [t,, t,,,], Wwhere the operator 4 has the usual meaning

AV = Yesr— Vo DYk = Yisa— Va1 + Vi
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Obviously S,(x) is continuously differentiable and S,(x) = x whenever x is
linear.

Theorem 2. For all x in LP we have
[Sn(x) —xl|,= const -wy(x, h),.

Proof. The proof of this theorem depends on Theorem 1. Obviously, the
operator x -~S,(x) is linear. On the other hand,

1SaC)p = 1Ax)l, + 1BAC)|, + ICH(IN , + 1D »
where

A (X)) = Yio

By(x)(t) = _’I‘I'Ayk'(t_tk)’
G = == Ay (=),

Dx)(t) = E‘;Aﬁyk(t—tm

foralltin [t, ¢, ., ]
In the estimations which follow we shall use the Holder-, and Minkowski-
inequalities several times, as stated in [1]. We have

uA,,(x)n,,=[z f utrat] * = [ 3yt =

‘k+-'2£ L t,‘+l .
~[rz |5 o0a T =[Gz 1 x0a] "=
tk_% ‘k"‘%‘
h
tetay
[hp -3 [ ko h] = lixl,;
tk———
1B, = [ ) ’:Z‘ ‘_’ll_Ayk(t—tk) P dt]‘/p =
h k+1+l
= [h,,(pH)Zl ykl"] = 2‘— [ x(tydt—
‘k+1‘—

3%
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'k+;_ 1/, 1 2_
_—‘ fh x(t) dt ] = [W f [x(t+ h)—x(t)] dt} ]
k—3 2

h
tyto

[(p+—1)hP‘ Zf |x(t + h) —x(t)|" dt - hP—l] =2-|x],;

4 -

ICe0)l, = [z f L dy -ty

= [ 5| aye 3 | Ma=anile| *
_[ Bep ) 7 Ve ] [2 1 Vie+1— 4Yx ]
2r-1h / 2p—1 \Yp Prl .
AYa|? + | AV P)| P = 2 P Xl =4- x5
[2p+1 2 (|4Yi41|? + | Ay )] [2p+1 p p
and finally
P p
1D, = Yl 1) dt] -
h3p+1 Yp
= S Ay —Ap.|P
[ 1 (3p+1) %' Vier1 — AVi| ] =

gp-1
S[ ] (h Z |A}’k+1lp+|A}’k|p] p54 llxll 3

and hence ||S,(x)||,= 11 -||x||,, that is, the operators S, are uniformly bounded.
Now let xcW3. By the Taylor-formula we have

x(t) = y()+z(t)+w(D),
where
() = x(ty)
At) = x"(t)(t—t)
W) = [ (t—£)-x"()d(e),
tk

whenever t is in [t,, t,,,]. Hence

IS4C) = xll,= 1 An() =Yl + 1Ba(x) = 2l p+ 1 Wllp + I C(X)ll + DAl
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Further, we obtain

W, = [2

[ -9 x"(s)dsl at] " =
[Zw[t It—allx”(s)lds] dt]

i1 l/p
sh[Z h[ f |x"(5)|Pd5-hP‘1]] = h2||x"’|,.
k t
On the other hand,
1
3 Ay,

e, = | 2 T Lyt " -

h2p+1 U 1 P1)p
= -— A2
\2p+1] [.kz b A ] '
But we have
_1_ P L Xty +2) — Xnlte+1) _ Xplt+1) — Xnte) ] P
Zid =2 h[ h h
* = 3L e
- g e 511 o]
%
1 fieya ’ -1, pp—1
=3 3| J o] =L flxh<s>|ﬂds R
= — [lxy'll5,
where we used the notation
t+—

x,(t) = — f x(s) ds,

and the fact, that

- fe34-2)
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Now observe, that
lxillp = [fIXif(t)IPdt] [f %x’[t.;.%]__’ll_x,[t__g_]lpdt]”p )
[flx,(t"'h)—x’(t)] dtr'l’ _ %[f t+h

/

thsa H'h p Y 1 thex 1 thez p
=]z S e a]” =3[z F[ F o]«

= |-

x'(8) de ‘ ? dt]”" -

== f (@) de-20-1. nv-l] = 2lx”l,,

Hence we have

h2r+1 Yp 2 o 4 2 liwrs
||C,,(x)||ps[2p+l] 2y = o
Similarly we get
4
D,(X)||,=—————— - k2. ||x"’|| -
DAl @p+ 1) "Il

To estimate ||A,(x)—y||, we notice, that by the Taylor-formula we have
S
x(s) = x(t)+x s~ )+ [ (s—&x"(¢) de
ty

for all sin [t,, f,,,]. It follows

'k+£' k+h
yk—— f x(s)ds—— f j (s — &)x""(¢) dE ds+x(ty),
'k‘f "‘_2_

and then we obtain

'Inl

1403, =2 [ tre-storeat|” =

-

K
"_

f f (s—&)x"() de ds
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[hz[llj f IX"(E)ldstH

tear PV i k+1 1/
=|rzw| [ @] ps-thhPf @l de-ro]” =
k £, K £,

= Rx”’.
Finally, to estimate ||B,(x)—z||, we use the identity

Xty + ’2 —Xt) X'(t) =

1
h i — X" ()
1 h h
= x(E)—x"(t,) = —|x| &+ —|—x| &x,——||—x'(t) =
Heo—x@ = [x[s+- 3]+ 65 )| @
K
= X(m)—x't) = [ x"(¢) dt,
ty
- - h h .
where & isin [t, f,+h] and 7, is in 5,‘—?, 5,;}-5 , hence 7, is in
h 3h .
t,— —,t,+—|. This yields
[k ok 2] y

t’l*l l , p llp
189zl = [3 ] |- x| ‘e-ropar] * =
k £ h |

AT N 2 ”
“[era [rora s P - G,

Summarizing our results, we have
I1Sx(x) —x[l,=C-h2- |Ix"" ||,

where the constant C depends only on p.
Now, our theorem is a consequence of Theorem 1. O
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