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Abstract. In this paper we shall be concerned with characterizing the
Cournot equilibrium points for a linear oligopoly model with multi-product
firms in relation to certain problems in mathematical programming, that is,
quadratic programming and linear complementarity problems. The negative
definiteness of the coefficient matrix of the inverse demand functions is
shown to be of crucial importance in order to guarantee the uniqueness of
the equilibrium point.

1. Introduction

In this paper we shall be concerned with characterizing the Cournot
equilibrium problem for a linear oligopoly model with multi-product firms
for mathematical programming point of view. Theocharis [15] has derived
an explicit solution for the linear Cournot oligopoly model without product
differentiation, Theocharis’ solution has been subject to some unwarranted
criticisms until Gehring [6] has derived a complete solution on the basis of a
z-transform. An alternative approach to the explicit solution of the linear
Cournot model without product differentiation has been proposed by Manas
[7] in relation to the solution of a convex programming problem. The Cour-
not oligopoly game with product differentiation and single product firms has
been discussed by several authors (see Friedman [4] and Okuguchi [9]).
Little, however, has been done on the Cournot oligopoly problem with multi-
product firms, the exceptions being the works by Eichhorn [2, 3], Selten [10]
and Bird [1] who have investigated a price-adjusting linear Cournot oli-
gopoly model. Szidarovszky and Okuguchi [13] have derived an existence
theorem for the equilibrium points for output-adjusting Cournot oligopoly
games with multi-product firms under general nonlinear conditions for the
demand and/or cost functions.

Here we are interested in characterizing the Cournot equilibrium prob-
lem for an output-adjusting linear oligopoly model with multi-product firms
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in relation to certain problems in mathematical programming, that is, quad-
ratic programming and linear complementarity problems. The relation bet-
ween the Cournot equilibrium problem for a non-linear oligopoly miodel wit-
hout product differentiation and the solution to a non-linear complementarity
problem has been discussed first by Gabay and Moulin [5], and then by Oku-
guchi [9] who has noted also that the competitive equilibrium for a Walrasian
general equilibrium model can be computed as a solution to a non-linear
complementarity problem.

2. The cournot equilibrium problem and mathematical programming

Let n be the number of the firms producing m differentiated products.
Let x, = (x;, - .., X;,) denote the i-th firm’s output vector, where x;; deno-

tes its output of the j-th product. Assume that S;= ]] [0, %;;] is the feasnble

production set of firm i, where ;;, a positive number is its capacity limit
for the j-th product. We assume tHat the demand functions are all linear and
given as

m

(l) xj— Z jkpk+ﬂ]’]_l 2 m,

where p, is the price of the k-th product and X ;= >'x;; is the total output
i

of the j-th product produced by all firms. We assume that the elements of the
coefficient matrix of (1) satisfy

(2) @;jj<0, 2 =0, j#Zk, j,k=1,2,...,m,
and that
il > <, 7i=1,2, ..., m,
(3a) | ,é;]“,kl J
(3b) Iaj]l>2 [akj|)j=1)21'~-7m
fe=j

The row diagonal dominance assumption (3a) for the Jacobian or coefficient
matrix of the demand functions implies that equal increases (or decreases)
in the prices of all goods will bring forth a decrease (or increase) in the de-
mand for any product. The column dominance assumption, on the other
hand, implies that the own price effect of any product dominates the sum
of all its cross effects in the sense that (3b) is satisfied. Since the coefficient
matrix of (1) is non-singular under (3a) or (3b), (1) is invertible. Hence we
can write

4) p.f=kzlajkxk+dj’j=l,2, ., m
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Invoking the Heertje theorem (see Selten [10]), we can prove that

() a;;<0, a3, =0, j=k,j, k= 1,2, ..., mand that
= i=1,2, ..., m,

(6&) |(1”| éjlaﬂc\ J m
a;|= a;:l,ji=1,2,...,

(6b) la;| éjl kils J m

In view of (5) and (6):
(7) 2|a”|>2|(1]k+akjl,j= 1,2, c ey m.

Let of = [a;,] be the coefficient matrix of the inverse demand functions (4).
Then (5) coupled with (7) shows that of + £’ is a matrix with negative domi-
nant diagonals and hence, it is negative definite.

The i-th firm’s total cost is assumed to be given as a linear function of
its outputs:

(8) ci(x;) = Za,!x +c,i=1,2, , m,

where b;;=0 for all i and j, and x; = (X, ..., X;5,). The i-th firm’s profit
function is given as

9) W = ; X pj—c(Xy), i =1, 2,

We assume that all firms form expectations on other firms’ output vectors
a la Cournot. It has been shown (see Szidarovszky and Okuguchi [13]) that
under the above conditions the function z; is concave in x; for all i, and the
non-cooperative game with sets S} s of strategies and payoff functions x; s
has at least one Nash (that is, Cournot) equilibrium point. Hence x =

= (Xp, ..., X,)’ is the Cournot equilibrium if and only if the following re-
lations are satisfied for each element of x;; of X; for all i:

In view of (4), (8) and (9), (10) is equivalent to

=0if x; =0
(ll) Z’x,kakj-l-zakxk-{-d 'j ZOIij-—xU
l 0if 0<x;; <%

By introducing the slack variables,
WijE-iij— Xij

=0 if x,;<7; =0 if x,;~0
N =0 otherwise * 4|=0 otherwnse

’
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relations (11) can be rewritten as

(12) %’x,kakl+%’djkxk+dj—bi]+vu—z,]=0-
Introduce next the following block-matrix:
A+t A ...
A A+t ...
Q=1 . S
A ot A+t

where of = [a,] is the coefficient matrix of (4). Then simple calculation
shows that (12) and the definition of the slack variables are equivalent to the
following relations:

Qx+d-b+v-z=0

X+W=y
(13) XZ=vVWwW=vz=0,x,v,z, w=0,

where the elements of vectors x, b, v,z, w, ¥ are X}y b,.j, Vijr Zijy Wijy Aijp T€S=
pectively, andd = (d, ..., d,,, ..., dy, ..., d,). Hence we have proven the

following result.

Theorem 1. If the demand functions satisfy (2) and (3), hence (5) and
6), x = (X;, ..., X,) is the Cournot equilibrium point for the linear oligopoly
model with multi-product firms if and only if (13) holds.

Remark. The above derivations imply that this theorem remains true
under a more general assumption that of + £’ is negative definite.

Assume now that the matrix of is symmetric. Under this additional
assumption, (5) and (6a) or (6b) imply that o£ is negative definite. In this
case the Cournot equilibrium problem is equivalent to a solution of a quadra-
tic programming problem, that is, the following theorem is true.

Theorem 2. If ot is symmetric and satisfies (5) and (6), then the Cournot

equilibrium point for the linear oligopoly model is an optimal solution of the
quadratic programming problem:

Maximize x’Qx + (d —b)’x
subject to
(14) 0=x=%.

Moreover the equilibrium point is unique.

Proof. It is known (see Szidarovszky [11]) that the block-matrix Q is
negative definite, and in this case the Kuhn-Tucker conditions are necessary
and sufficient. The Kuhn-Tucker conditions for problem (14) are relations
(13) without the equation v’z = 0. Since the Cournot equilibrium point for
the linear model satisfies (13), the Kuhn-Tucker conditions are also satisfied.
Hence it is an optimal solution of (14). The uniqueness is ensured by strict
concavity of the objective function in (14). O
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Remark. The theorem without the uniqueness part holds true if £ is as-
sumed to be symmetric and negative semi-definite.

In order to see the relation between the Cournot equilibrium and a so-
lution to a linear complementarity problem, consider the following problem:

Find non-negative vectors x=0, v=0, z=0, w=0 such that

5ol 11
(15) xXz=0,vw=0.

By observing that the first and second equalities in (13) can be rewritten
as the first constraint in (15), we have the following result.

Theorem 3. Under the conditions of Theorem 1, the Cournot equilibrium
point, that is, the solution of (13) is a solution of the linear complementary prob-
lem (15). If the solution of (15) satisfies the additional constraint v’z = 0, then
it is a solution of (13). Moreover, the Cournot equilibrium point is unique if
problem (15) has a unique solution.

Assume, finally, that the capacity constraints are nonbinding for all
firms and for all of the products. In this case v;; in (13) satisfies v;; = 0 for
all i and j, and the condition Xx+w = ¥ vanishes. Hence the following re-
sult is true.

Theorem 4. If the same conditions as for Theorem 1 are satisfied, and if,
in addition, the capacity constraints are non-binding for all firms and for all
of the products, the Cournot equilibrium point for the linear oligopoly modell
with multi-product firms and the solution of the following linear complementary
problem are identical :

Find x=0,z=0 suchthat

Qx+d—-b=1z
(16) x'z = 0.

3. Concluding remarks

We have characterized the Cournot equilibrium problem for an oligo-
poly game with multiproduct firms with linear demand and cost functions
as the x-part of a solution of a system of equations (13). We have also shown
the relation between the Cournot equilibrium problem and a solution of a
certain quadratic programming problem, and that between the Cournot equ-
ilibrium problem and a solution to a linear complementarity problem. If the
capacity constraints are nonbinding, the Cournot equilibrium point is iden-
tical to a solution to the special linear complementarity problem (16). Hence
any available algorithm for finding a solution of concave quadratic program-
ming problems or linear complementarity problems can be applied to com-
pute Cournot equilibrium points. For practical methods see e.g. Szidarovszky
and Yakovitz [14].
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