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(0,2) Interpolation

Abstract. A new method for solving the (0,2) interpolation problem is
presented. It has been shown that if f¢€ Lipya, O<a=1, f€Cr[0,1] and r =
= 2, 3, 4, then the method is O(h—i+=) in f@)(x) for all i=0, 1, ..., r, where
h is the maximum step size. In addition, a stability result for such interpola-
tion is also presented.

1. Introduction. In the recent paper [1] by A. Meir and A. Sharma, error
bounds have been developed for (0,2) interpolation of certain functions by
deficient splines. Swartz add Varga in [2] have extended the results of [1]
to a wider class of functions and have indicated that the extended results
are the best possible.

The main results of Swartz and Varga are given in the following theorem.

_ Theorem 1.1. Let fe C¥[0,1], where 0=k <6, let n be an odd integer, and let
S, be the unique generalized Meir- Sharma interpolation of f in S&s (cf.[1],
Theorem 7). Then there exists a constant K, independent of f and n such that

Kn'*i~ko(D*f; 1/n)=||Di(f - S,)|l-, 0=j= min (k, 4).
In this paper, the values of such constants are completely calculated.
Moreover, the boundary conditions of the Meir-Sharma interpolant of f,
D¥f—S8,)0) =0 and D3(f-S,)1)=0
are released.

In the following sections we present our interpolants for each value of
r separately and prove the convergence in this case.
Thus, we begin with the first case when fe C?[0, 1].

2. Case A. In this case fe C?[0, 1] and we consider the partition:
A:0=X<X;<...<X<Xpp1<...<X, =1

wherefork =0,1,...,n—1,h, = x,,,—x, and h = max h,.
k
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Theorem 2.1. Given arbitrary numbers f®(x,), k = 0(1)n—1 and p =
= 0, 2. Then there exists a unique spline S 5(x) such that

@1 Saecio, 1],
(2.2) Sa(x)€m, on each [x;, x; 1], k = 0(1)n—1 and
(2.3) SP(x) = fo(x,) = fP, k =0(l)n; p =0, 2.
Proof. Let for x,=x=x,,,, kK = 0(1)n—1,

1 .~
(2.4) Sa(x) =8 (%) = fr+ a(x—x) + ’2—fk(x —x)%
Thus, for kK = 0(1)n—1, the value
(25) e = [fens— =g

proves Theorem 2.1. O
Let w;(h) (i = 2, 3, 4) denote the modulus of continuity of f®(x).

Theorem 2.2. Let fc¢ C2[0, 1]. Then for the unique quadratic spline S 5(x)
associated with f and given in Theorem 2.1, we have for all x¢ [0, 1],

1S 4(0)—f(X)| = ay(h),
1S ()= F/(0)] %h () and

|SZC)—F ()| = wy(h).

Proof. Using (2.4), (2.5) and the Taylor expansion of f(x), it is easy to
prove it. O

3. Case B. In this case fe C3[0, 1] and we consider the partition:
0£:0 =Xp<Xy<...<X<Xpp1<...<X, =1

where for k = O(1)n—1, h, = x,,,—x, and h = max k,.

k
Theorem 3.1. Given arbitrary numbers fP(x,), k = 0(1)n; p = 0, 2,
then there exists a unique spline S A(x) such that:

3.1 Sa(X)€my on each [x;, x;4,1], k = 0(1)n—1,

3.2) SA(x)€C<° [0, 1], i.e both So(x) and SX(x) is continuous for all
x€[0, 1], a

(3.3 S$P(x,) = fP(x,), k = 0()nand p = 0, 2.
Proof. Let for x,=x=x,,,,k = 0(I)n—1

(34) Sa0) = 8,09 = [t ay(x—x)+ Slr—x)+o cux ).
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Then for all k = 0(1)n—1, the values

o 1 . 1 "
3.5) a, = [fk+1—fk—1/2fkh£-§—'“hlchk+l +-3—'-h2 k]hk~
and
(3.6) ¢ = [fhr1—fillhe

prove Theorem 3.1. O

Theorem 3.2. Let fe C2[0, 1]. Then for the unique cubic spline S 5(x) asso-
ciated with f and given in Theorem 3.1, we have for all x¢ [0, 1],

IS2(x) = FOX)| = Ky b~ (h), i = 0,1, 2, 3,

where Ks,o = %, K3.1 = %, Ka'z =1 and K3.3 = 1.

Proof. The proof is obvious for i = 3, using (3.6).

If i=0, 1 and 2, then we consider the Taylor expansion for x,=x=x,.,,,
k = 0(l)n-1,

2, f0(x,) 19)
3.7 (x) = (X=X, ) D : —x,)3-D,
( ) f (x) jzl (]_ l)l (x xk) + (3—1)] (x xk)
where x, <& <x,,,.
Using the above equation (3.7) with (3.4), (3.5) and (3.6) it will be easy
to complete the proof. O

4. Case C. In this case fe C4[0, 1] and we consider the partition:

A0 =Xg<Xy<...<X<Xpp<...<X, =1

where x,,,—x, = hand k = 0(1)n—1.

Theorem4.1. Given arbitrary numbers fPX(x,) = fiP, k = 0(1)n; p =
= 0, 2. Then, there exists a unique spline S 5(x) such that

4.1) Sa(x)€m, on each [x,, X4, k=0,1, ..., n—1,
(4.2) Sa(x)ece[o, 1],
43) $P(x,) = fP(x,) = fiP, k = 0(1)n; p = 0, 2,
So(X), Xo=x=Xx,,
S x) = 0 0 1
(4-4) a() {Sk(x), X, SXSXp4p, k= 1(1)n—1,

where
1 1 1
(4.5) Sp(x)=fi+a(x—x)+ o Tu(x—x,)%+ 31 (X —x,)3 + de(x_ x4

(46) dy = [fisr—2fu+ fealI2, k = 1(1)n—1.
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and
(47) Su®) = fork @x=) b fo(x =0+ (x =)+ o x— )t

Proof. Using (4.2), (4.3) and (4.5), then we easily get,
1

(4.8) G = [f:'+1_f;—?h2dk]/h and
(4.9) a, = [fk+1—fk—ihzf:_llick _—’idk]/h;
2 3! 4]

and this determines uniquely S,(x) and Sy(x).
Hence the proposition of Theorem 4.1. O

Theorem 4.2. Let f€ C4[0, 1]. Then for the unique spline SA(x) given in
Theorem 4.1, we have for all x€[0,1], k = 1(1)n—1

(4.10) |SD(X) = fO(x)| = K, it 2o, (h), @ = 0(1)4
and for all x€[x,, x,],
(4.11) S16°(x) - fOx)| = K3, it~ 'oy(h), i = 0(1)4,

Whefe K4’o = 3/8, K‘,l = 13/16, K4'2 = 3/2, K4's = 9/4, K4'4 = 3/2,
K%, = 5/12, KE, = 47/48, K, = 2, K¥ 5 = 13/4, K} , = 5/2.

Before proving this theorem, we state and prove some lemmas which
will help us in arriving at the proof.

Lemma 4.1. For d, given in (4.6), we have
|dy— S®(x)| = (3/2)w,(h)
which holds for all x€ [x,, x,,,] and all k = 1(1)n—1.

Proof. Using (4.6), the Taylor expansion of ¥+, and fi/ and the defini-
tion of the modulus of continuity, we can easily prove this lemma. O

Lemma 4.2. For ¢, given in (4.8), we have

3
lex— ()| = Zh“h(h)
which holds for all k = 1(1) n—1.

Proof. Using (4.8), the Taylor expansion of f;’,, and Lemma 4.1, it
will be easy to prove it. O

Lemma 4.3. For a, given in (4.9), the inequality

)| =
la,— f' (x| =23
holds for all k = 1(1)n—1.

Hw,(h).
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Proof. Using (4.9) with the help of Lemma 4.1 and Lemma 4.2, we can
easily complete the proof. O

Proof of Theorem 4.2. We have for all x€[x,, x,,,]and allk = 1(I)n—1,
the Taylor expansion,

(@12) £00)= SO~ D300+ G SO,

where x, <0 <x,,,andi =0, 1,2, 3.
Using (4.5), (4.6), (4.8) and (4.9) with the help of Lemmas 4.1—4.3.
we can complete the proof of this theorem for k¥ = 1(I)n—1andi =0, 1,2, 3.
If i = 4, then we get the situation of Lemma 4.1 for all K = 1(I)n—1.
Hence the proposition (4.10).

For x€[x,, x,], we use similar technique and we easily can prove (4.11).
Thus the proof of Theorem 4.2 is complete. O

5. Stability. We conclude this note with a stability result concerning the
case C, when fe C4[0, 1] while it is easy to prove similar stability results for
the other two cases when f€ C? and C3.

Theorem 5.1. Let fe C4[0, 1] and let S A(x) be the unique spline constructed
in the same manner as that of Theorem 4.1 and satisfying the following data :

(G.1) Salx) = o, k = 0(1)n,
(5.2) Sa() = B k = 0(1)n
where we suppose that there exists a function F(f, h) such that :
(5.3) wy(t) WF(f, h)=max| f(x)—ad
and

(-4 y(h) B*F(f, hyz=max| f7(x,) = Byl

Then there exist constants K, and K, independent of F, f and h such that
the inequality

IDH(f — S a)ll = h*~'eoy(H) [ KF + K]
holds for all i = 0(1)4, where ||-||. = |- llL[0, 1}-

Proof. The unique spline polynomial S (x) can be easily constructed in
the form:

_ So(X), Xp=X=x
55) 5.u0) = {_o< ) %o A
" Si(%), Xy=x=X4y, k=1(1)n—1,
where

(5.6) §o(x) = 2+ 8;(X—Xo) + %ﬂo(x —Xo)?+ BL! C(x—x0)% + % al(x —Xo)4
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(5.7 gk(x) = o+ G (x —x) + %ﬂk(x —X)%+ %ck(x — X2+ ":_lak(x - X4

(5.9 G = Bess—28c+Bea i, & = 1(Dn—1,

(5.9) G = [Buss—Bu= o WG, k= 1(Dn—1

and

(5:10) B = [sgs= o=y By — 5 G- Bl e = 1(Dn—1.
3! 4!

We prove this theorem for S,(x) only where k = 1(1)n— 1 while it is easy
to prove it for Sy(x).

For this reason, we use (5.7)—(5.10) and (4.5)—(4.9) and we easily
get:

(5.11) |@, — a, | = (62/24)h3w,(h)F,
(5.12) |¢— €| = howy(R)F

and

(5.13) |d,—d,| =4w,(h)F.

We also have, for all x,=x=x,,, and k = I(I)n—1,
| () = Si(x)| = | 1(x) = Si(x)| + | Si(x) = Si(x)| =

= 1709~ Su0) + |fu el +hlay=ul +-H1 1 =Byl +

h? - ht -
+§ lex—cl + Z!—ldk_dk"
Using Theorem 4.2, (5.3), (5.4), (5.11), (5.12) and (5.13) we easily get
53 3
(5.14) 17() = Su(¥)| = h‘m(h)[EF + E]'

Similarly, we can get the following results for the derivatives:

(5.15) |//(x) — Su(x)| = hw,(h) [-m ]
(5.16) 1776 -S| <ho ] 4F + 3 |

(5.17) | f®(x) - S (%) | §hw‘(h)[ 5F + %].
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and

(4.18)

1/Ox) - 5P )| éan(’l)[ 4F +.2.]

Hence the proposition of Theorem 5.1. O
We used the following example to test the method and we got the fol-
lowing results.

Example. We considered f(x) = 1+xe*, x¢[0, 1], x, = kh, kK = 0(1)10
and h = 0.1. The results are given for x = 0.86:

‘The function Numerical values Exact values ‘The error
Case A) feC*[0,1]:
3.032880959 3.032318197 5.627600E —4
’ 4.394415716 4.395478890 1.063170E -3
b il 6.23154600 6.758639584 5.27T1249E -1
Case B) feC3 [0,1]:
3.032304099 3.032318197 1.409800E -5
Vil 4.395617486 4.395478890 1.385960E —4
Jid 6.772315150 6.758639584 1.367567E -2
7@ 9.013344220 9.121800278 1.084561E —1
Case C) feC4 [0,1]:
3.032317366 3.032318197 8.300000E -7
’ 4.395485583 4.395478890 6.693000E — 6
’ 6.759480996 6.758639584 8.414120E —4
I® 9.120296352 9.121800278 1.503926E — 3
J® 10.69521320 11.48496097 7.897478E —1
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