NOTES ON LACUNARY INTERPOLATION BY SPLINES. II. (0,2) INTERPOLATION

THARWAT FAWZY

Dept. of Math., Suez-Canal University, Ismailia (Received November 24, 1984)

(0,2) Interpolation

Abstract. A new method for solving the (0,2) interpolation problem is presented. It has been shown that if $f \in \operatorname{Lip}_{M} \alpha$, $0 < \alpha \le 1$, $f \in C^{r}[0,1]$ and r = 2, 3, 4, then the method is $O(h^{r-1+\alpha})$ in $f^{(i)}(x)$ for all $i = 0, 1, \ldots, r$, where h is the maximum step size. In addition, a stability result for such interpolation is also presented.

1. Introduction. In the recent paper [1] by A. Meir and A. Sharma, error bounds have been developed for (0,2) interpolation of certain functions by deficient splines. Swartz add Varga in [2] have extended the results of [1] to a wider class of functions and have indicated that the extended results are the best possible.

The main results of Swartz and Varga are given in the following theorem.

Theorem 1.1. Let $f \in C^k[0,1]$, where $0 \le k < 6$, let n be an odd integer, and let \overline{S}_n be the unique generalized Meir-Sharma interpolation of f in $S_{n,5}^{(3)}$ (cf. [1], Theorem 1). Then there exists a constant K, independent of f and n such that

$$Kn^{1+j-k}\omega(D^kf; 1/n) \ge ||D^j(f-\overline{S}_n)||_{\infty}, \ 0 \le j \le \min (k, 4).$$

In this paper, the values of such constants are completely calculated. Moreover, the boundary conditions of the Meir-Sharma interpolant of f,

$$D^{3}(f-S_{n})(0) = 0$$
 and $D^{3}(f-S_{n})(1) = 0$

are released.

In the following sections we present our interpolants for each value of r separately and prove the convergence in this case.

Thus, we begin with the first case when $f \in C^2[0, 1]$.

2. Case A. In this case $f \in C^2[0, 1]$ and we consider the partition:

$$\triangle: 0 = x_0 < x_1 < \ldots < x_k < x_{k+1} < \ldots < x_n = 1$$

where for $k = 0, 1, ..., n-1, h_k = x_{k+1} - x_k$ and $h = \max_k h_k$.

Theorem 2.1. Given arbitrary numbers $f^{(p)}(x_k)$, k = 0(1)n-1 and p = 0, 2. Then there exists a unique spline $S_{\Delta}(x)$ such that

(2.1)
$$S_{\Delta}(x) \in C[0, 1],$$

(2.2)
$$S_{\Delta}(x) \in \pi_2$$
 on each $[x_k, x_{k+1}], k = 0 (1)n-1$ and

(2.3)
$$S_{\Delta}^{(p)}(x_k) = f^{(p)}(x_k) = f_k^{(p)}, \ k = 0(1)n; \ p = 0, 2.$$

Proof. Let for $x_k \le x \le x_{k+1}$, k = 0(1)n - 1,

(2.4)
$$S_{\Delta}(x) = S_k(x) = f_k + a_k(x - x_k) + \frac{1}{2} f_k''(x - x_k)^2.$$

Thus, for k = 0(1)n - 1, the value

(2.5)
$$a_k = \left[f_{k+1} - f_k - \frac{1}{2} h_k^2 f_k'' \right] / h_k$$

proves Theorem 2.1.

Let $\omega_i(h)$ (i = 2, 3, 4) denote the modulus of continuity of $f^{(i)}(x)$.

Theorem 2.2. Let $f \in C^2[0, 1]$. Then for the unique quadratic spline $S_{\Delta}(x)$ associated with f and given in Theorem 2.1, we have for all $x \in [0, 1]$,

$$|S_{\Delta}(x) - f(x)| \le h^2 \omega_2(h),$$

$$|S_{\Delta}'(x) - f'(x)| \le \frac{3}{2} h \omega_2(h) \text{ and}$$

$$|S_{\Delta}''(x) - f''(x)| \le \omega_2(h).$$

Proof. Using (2.4), (2.5) and the Taylor expansion of f(x), it is easy to prove it. \Box

3. Case B. In this case $f \in C^3[0, 1]$ and we consider the partition:

$$\triangle : 0 = x_0 < x_1 < \ldots < x_k < x_{k+1} < \ldots < x_n = 1$$

where for k = 0(1)n - 1, $h_k = x_{k+1} - x_k$ and $h = \max_{k} k_k$.

Theorem 3.1. Given arbitrary numbers $f^{(p)}(x_k)$, k = 0(1)n; p = 0, 2, then there exists a unique spline $S_{\Delta}(x)$ such that:

(3.1)
$$S_{\Delta}(x) \in \pi_3 \text{ on each } [x_k, x_{k+1}], k = 0(1)n-1,$$

(3.2) $S_{\Delta}(x) \in C^{(0,2)}[0, 1]$, i.e. both $S_{\Delta}(x)$ and $S''_{\Delta}(x)$ is continuous for all $x \in [0, 1]$, and

(3.3)
$$S_{\Delta}^{(p)}(x_k) = f^{(p)}(x_k), k = O(1)n \text{ and } p = 0, 2.$$

Proof. Let for $x_k \le x \le x_{k+1}$, k = 0(1)n-1

$$(3.4) \quad S_{\Delta}(x) = S_k(x) = f_k + a_k(x - x_k) + \frac{1}{2} f_k''(x - x_k)^2 + \frac{1}{3!} c_k(x - x_k)^3.$$

Then for all k = 0(1)n - 1, the values

(3.5)
$$a_k = \left[f_{k+1} - f_k^{-1/2} f_k'' h_k^2 - \frac{1}{3!} h_k^2 f_{k+1}'' + \frac{1}{3!} h_k^2 f_k'' \right] h_k.$$

and

$$(3.6) c_k = [f''_{k+1} - f''_k]/h_k$$

prove Theorem 3.1. □

Theorem 3.2. Let $f \in C^2[0, 1]$. Then for the unique cubic spline $S_{\Delta}(x)$ associated with f and given in Theorem 3.1, we have for all $x \in [0, 1]$,

$$|S_{\triangle}^{(i)}(x) - f^{(i)}(x)| \le K_{3,i}h^{3-i}\omega_{\omega}(h), i = 0, 1, 2, 3,$$

where

$$K_{3,0} = \frac{1}{3}$$
, $K_{3,1} = \frac{1}{6}$, $K_{3,2} = 1$ and $K_{3,3} = 1$.

Proof. The proof is obvious for i = 3, using (3.6).

If i=0, 1 and 2, then we consider the Taylor expansion for $x_k \le x \le x_{k+1}$, k=0(1)n-1,

$$(3.7) f^{(i)}(x) = \sum_{j=1}^{2} \frac{f^{(j)}(x_k)}{(j-i)!} (x-x_k)^{(j-i)} + \frac{f^{(3)}(\xi_i^{(k)})}{(3-i)!} (x-x_k)^{(3-i)}.$$

where $x_k < \xi_i^{(k)} < x_{k+1}$.

Using the above equation (3.7) with (3.4), (3.5) and (3.6) it will be easy to complete the proof. \Box

4. Case C. In this case $f \in C^4[0, 1]$ and we consider the partition:

$$\triangle: 0 = x_0 < x_1 < \ldots < x_k < x_{k+1} < \ldots < x_n = 1$$

where $x_{k+1} - x_k = h$ and k = 0(1)n - 1.

Theorem 4.1. Given arbitrary numbers $f^{(p)}(x_k) = f_k^{(p)}$, k = 0(1)n; p = 0, 2. Then, there exists a unique spline $S_{\Delta}(x)$ such that

(4.1)
$$S_{\Delta}(x) \in \pi_4$$
 on each $[x_k, x_{k+1}], k = 0, 1, ..., n-1,$

(4.2)
$$S_{\Delta}(x) \in C^{(0,2)}[0,1],$$

(4.3)
$$S_{\Delta}^{(p)}(x_k) = f^{(p)}(x_k) = f_k^{(p)}, k = 0 \ (1)n; p = 0, 2,$$

(4.4)
$$S_{\Delta}(x) = \begin{cases} S_0(x), & x_0 \le x \le x_1, \\ S_k(x), & x_k \le x \le x_{k+1}, & k = 1 \\ 1 & 1 - 1, \end{cases}$$

where

$$(4.5) \quad S_k(x) = f_k + a_k(x - x_k) + \frac{1}{2} f_k''(x - x_k)^2 + \frac{1}{3!} c_k(x - x_k)^3 + \frac{1}{4!} d_k(x - x_k)^4,$$

(4.6)
$$d_k = [f''_{k+1} - 2f''_k + f''_{k-1}]/h^2, \ k = 1(1)n - 1.$$

and

$$(4.7) \quad S_0(x) = f_0 + a_1(x - x_0) + \frac{1}{2} f_0''(x - x_0)^2 + \frac{c_1}{3!} (x - x_0)^3 + \frac{d_1}{4!} (x - x_0)^4.$$

Proof. Using (4.2), (4.3) and (4.5), then we easily get,

(4.8)
$$c_k = [f''_{k+1} - f''_k - \frac{1}{2} h^2 d_k]/h \text{ and}$$

(4.9)
$$a_k = \left[f_{k+1} - f_k - \frac{1}{2} h^2 f_k'' - \frac{h^3}{3!} c_k - \frac{h^4}{4!} d_k \right] / h,$$

and this determines uniquely $S_k(x)$ and $S_0(x)$.

Hence the proposition of Theorem 4.1.

Theorem 4.2. Let $f \in C^4[0, 1]$. Then for the unique spline $S_{\triangle}(x)$ given in Theorem 4.1, we have for all $x \in [0,1]$, k = 1(1)n-1

(4.10)
$$|S_{\Delta}^{(i)}(x) - f^{(i)}(x)| \le K_{4,i}h^{4-1}\omega_4(h), \ i = 0(1)4$$

and for all $x \in [x_0, x_1]$,

(4.11)
$$S|_{0}^{(i)}(x) - f^{(i)}(x)| \le K_{4,i}^{*} h^{4-i} \omega_{4}(h), \ i = 0(1)4,$$

where

$$K_{4,0} = 3/8, K_{4,1} = 13/16, K_{4,2} = 3/2, K_{4,3} = 9/4, K_{4,4} = 3/2,$$

$$K_{4,0}^* = 5/12, K_{4,1}^* = 47/48, K_{4,2}^* = 2, K_{4,3}^* = 13/4, K_{4,4}^* = 5/2.$$

Before proving this theorem, we state and prove some lemmas which will help us in arriving at the proof.

Lemma 4.1. For d_k given in (4.6), we have

$$|d_k - f^{(4)}(x)| \le (3/2)\omega_4(h)$$

which holds for all $x \in [x_k, x_{k+1}]$ and all k = 1(1)n - 1.

Proof. Using (4.6), the Taylor expansion of $f_{k+1}^{"}$ and $f_k^{"}$ and the definition of the modulus of continuity, we can easily prove this lemma. \square

Lemma 4.2. For c_k given in (4.8), we have

$$\left|c_k - f^{(3)}(x_k)\right| \leq \frac{3}{4} h \omega_4(h)$$

which holds for all k = 1(1) n - 1.

Proof. Using (4.8), the Taylor expansion of f''_{k+1} and Lemma 4.1, it will be easy to prove it. \Box

Lemma 4.3. For a_k given in (4.9), the inequality

$$|a_k - f'(x_k)| \le \frac{9}{2(4!)} h^3 \omega_4(h).$$

holds for all k = 1(1)n - 1.

Proof. Using (4.9) with the help of Lemma 4.1 and Lemma 4.2, we can easily complete the proof. \Box

Proof of Theorem 4.2. We have for all $x \in [x_k, x_{k+1}]$ and all k = 1(1)n - 1, the Taylor expansion,

$$(4.12) \quad f^{(i)}(x) = \sum_{i=1}^{3} \left[f^{(i)}(x_k) / (j-i)! \right] (x-x_k)^{(j-i)} + \frac{1}{(4-i)!} f^{(4)}(\xi_i^{(k)}) (x-x_k)^{(4-i)},$$

where $x_k < \xi_i^{(k)} < x_{k+1}$ and i = 0, 1, 2, 3.

Using (4.5), (4.6), (4.8) and (4.9) with the help of Lemmas 4.1-4.3. we can complete the proof of this theorem for k = 1(1)n-1 and i = 0, 1, 2, 3.

If i = 4, then we get the situation of Lemma 4.1 for all k = 1(1)n - 1. Hence the proposition (4.10).

For $x \in [x_0, x_1]$, we use similar technique and we easily can prove (4.11). Thus the proof of Theorem 4.2 is complete. \Box

5. Stability. We conclude this note with a stability result concerning the case C, when $f \in C^4[0, 1]$ while it is easy to prove similar stability results for the other two cases when $f \in C^2$ and C^3 .

Theorem 5.1. Let $f \in C^4[0, 1]$ and let $\overline{S}_{\triangle}(x)$ be the unique spline constructed in the same manner as that of Theorem 4.1 and satisfying the following data:

$$\overline{S}_{\Delta}(x_k) = \alpha_k \qquad k = 0(1)n,$$

$$\overline{S}'_{\Delta}(x_k) = \beta_k \qquad k = 0(1)n$$

where we suppose that there exists a function F(f, h) such that:

(5.3)
$$\omega_4(h) h^4 F(f, h) \ge \max_k |f(x_k) - \alpha_k|$$

and

(5.4)
$$\omega_4(h) h^2 F(f,h) \ge \max_k |f''(x_k) - \beta_k|.$$

Then there exist constants K_i and \overline{K}_i independent of F, f and h such that the inequality

$$\|D^i(f-\overline{S}_\triangle)\| \leq h^{4-i}\omega_4(h)[\overline{K_i}F+K_i]$$

holds for all i = 0(1)4, where $\|\cdot\|_{\infty} = \|\cdot\|_{L_{\infty}[0, 1]}$.

Proof. The unique spline polynomial $\overline{S}_{\Delta}(x)$ can be easily constructed in the form:

(5.5)
$$\overline{S}_{\Delta}(x) = \begin{cases} \overline{S}_0(x), & x_0 \leq x \leq x_1 \\ \overline{S}_k(x), & x_k \leq x \leq x_{k+1}, & k = 1 \\ 1 & (1)n - 1, \end{cases}$$
where

$$(5.6) \ \overline{S}_0(x) = \alpha_0 + \overline{a}_1(x-x_0) + \frac{1}{2}\beta_0(x-x_0)^2 + \frac{1}{3!}\overline{c}_1(x-x_0)^3 + \frac{1}{4!}\overline{d}_1(x-x_0)^4,$$

$$(5.7) \quad \overline{S}_k(x) = \alpha_k + \overline{a}_k(x - x_k) + \frac{1}{2}\beta_k(x - x_k)^2 + \frac{1}{3!}c_k(x - x_k)^3 + \frac{1}{4!}\overline{d}_k(x - x_k)^4,$$

(5.8)
$$\overline{d}_{k} = [\beta_{k+1} - 2\beta_{k} + \beta_{k-1}]/h^{2}, \quad k = 1(1)n - 1,$$

(5.9)
$$\bar{c}_k = [\beta_{k+1} - \beta_k - \frac{1}{2} h^2 \bar{d}_k]/h, \ k = 1(1)n - 1$$

and

(5.10)
$$\bar{a}_k = \left[\alpha_{k+1} - \alpha_k - \frac{1}{2}h^2\beta_k - \frac{h^3}{3!}\bar{c}_k - \frac{h^4}{4!}\bar{d}_k\right]/h, \ k = 1(1)n - 1.$$

We prove this theorem for $S_k(x)$ only where k = 1(1)n - 1 while it is easy to prove it for $S_0(x)$.

For this reason, we use (5.7)-(5.10) and (4.5)-(4.9) and we easily get:

$$|\bar{a}_k - a_k| \le (62/24)h^3 \omega_4(h)F,$$

$$|\bar{c}_k - c_k| \le \hbar \omega_4(h) F$$

and

$$(5.13) |\overline{d}_k - d_k| \le 4\omega_{\Delta}(h)F.$$

We also have, for all $x_k \le x \le x_{k+1}$ and k = 1(1)n - 1,

$$|f(x) - \overline{S}_{k}(x)| \leq |f(x) - S_{k}(x)| + |S_{k}(x) - \overline{S}_{k}(x)| \leq$$

$$\leq |f(x) - S_{k}(x)| + |f_{k} - \alpha_{k}| + h|a_{k} - \overline{a}_{k}| + \frac{1}{2}h^{2}|f_{k}^{"} - \beta_{k}| +$$

$$+ \frac{h^{3}}{3!} |c_{k} - \overline{c}_{k}| + \frac{h^{4}}{4!}|d_{k} - \overline{d}_{k}|.$$

Using Theorem 4.2, (5.3), (5.4), (5.11), (5.12) and (5.13) we easily get

$$|f(x) - S_k(x)| \le h^4 \omega_4(h) \left[\frac{53}{12} F + \frac{3}{8} \right].$$

Similarly, we can get the following results for the derivatives:

$$|f'(x) - \overline{S}'_k(x)| \le h^3 \omega_4(h) \left[\frac{19}{4} F + \frac{13}{16} \right],$$

$$|f''(x) - \overline{S}_{k}''(x)| \le h^{2}\omega_{4}(h)\left[4F + \frac{3}{2}\right],$$

$$|f^{(3)}(x) - \overline{S}_k^{(3)}(x)| \le h\omega_4(h) \left[5F + \frac{9}{4} \right].$$

and

$$(4.18) |f^{(4)}(x) - \overline{S}_k^{(4)}(x)| \le \omega_4(h) \left[4F + \frac{3}{2} \right].$$

Hence the proposition of Theorem 5.1. \square

We used the following example to test the method and we got the following results.

Example. We considered $f(x) = 1 + xe^x$, $x \in [0, 1]$, $x_k = kh$, k = 0(1)10 and h = 0.1. The results are given for x = 0.86:

The function	Numerical values	Exact values	The error
Case A) $f \in C^2$ [0,	,1]:		
f f'' f''	3.032880959 4.394415716 6.23154600	3.032318197 4.395478890 6.758639584	5.627600E - 4 1.063170E - 3 5.271249E - 1
Case B) $f \in C^3$ [0	,1]:		
f f" f(3)	3.032304099 4.395617486 6.772315150 9.013344220	3.032318197 4.395478890 6.758639584 9.121800278	1.409800E - 5 1.385960E - 4 1.367567E - 2 1.084561E - 1
Case C) $f \in C^4$ [0,	,1]:		
f f'' f(a) f(a)	3.032317366 4.395485583 6.759480996 9.120296352 10.69521320	3.032318197 4.395478890 6.758639584 9.121800278 11.48496097	8.300000E - 7 6.693000E - 6 8.414120E - 4 1.503926E - 3 7.897478E - 1

REFERENCES

- [1] Meir A. and Sharma A.: Lacunary interpolation by splines. SIAM J. Numer. Anal., 10 (3) (1973).
- [2] Swartz B. K. and Varga R. S.: A note on lacunary interpolation by splines. SIAM J. Numer. Anal. 10 (1) (1973), 443-447.
- [3] Varma A. K.: Lacunary interpolation by splines. Acta Math. Acad. Sci. Hungar. 31 (3-4) (1978), 183-192.
- [4] Fawzy Th.: Notes on lacunary interpolation by splines. I. (0,3) interpolation. Annales Univ. Sci. Budapest., Sectio Math. 28 (1985), 17-28.