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Abstract. In this paper some mathematical properties of the classical
and universal Kriging method will be investigated. Under certain conditions
the convergence of the methods is shown if the number of observation points
tends to infinite. The speed of the convergence is also estimated, and these
estimations can be used in the practice. The effect of the approximating data
is also included in the error estimations.

1. Introduction

In this paper the generalized version of the classical Kriging method, the
so called universal Kriging method will be examined. The convergence of
this method and the speed of the convergence will be investigated under
certain assumptions. The error formulas derived in this paper are very useful
in the application, since the uncertainty of the estimates can be forecasted
before making the actual measurements and therefore they give an important
aid in locating the observation points.

2. The universal Kriging method

Let f(x) and n(x) be uncorrelated real-valued functions defined on a do-
main X in R™, Suppose {(x;, ¥,)}i1 is a sequence of “noisy”” function pairs;
that is, suppose

2.1) yi =fx)+n(x), (I=i=N).

The interpretation is that f(x) is a function whose values are to be estimated,
and n(x) represents a noise if a measurement is taken at position x. We sup-
pose that the noise has zero mean, i.e. E(n(x)) = 0 and variance var (n(x)) =
= ¢ not depending on x€ X. We discuss below two problems which are cent-
ral in the Kriging literature.

6 ANNALES — Sectio Computatorica — Tomus VI.
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Problem 1. Let x*¢ X be specified. It may or may not be among the
sample pairs. On the basis of the sample pairs {(x;, ¥,)}i-1,

(a) provide an estimate fy(x*) of f(x*), and
(b) provide an estimate of the expected squared error

E[(fN(X*)—f(x*))zlxly <. -’xn]'

Remark. Because practitioners desire to estimate piezometric head in
oil and water aquifers or the grade of an ore body as a function of positon, the
dimension m of the domain X is often 2 or 3.

Problem 2. Let {(x; y,)}i.: be as above and let D be a subregion of
domain X.

(a) estimate the integral f f(x) dx, and
D

(b) provide a formula for the (sample-dependent) expected square error
of this estimate.

Remark. An application motivating Problem 2 is that of estimating the
total weight of metal which can be extracted from the ore body occupying
volume D, given imperfect assay estimates of the grade at distinct locations.

Problems 1 and 2 seem to have their roots in the forestry and geostatis-
tics literature. In fact, it seems that “‘geostatistics” is almost synonymous
with Kriging. We have no doubt that Problems 1 and 2 are important and
interesting. For example, in the mining industry f(x) is the thickness of the
deposit or the value of a quality parameter of the deposit. In the first case
the integral gives the tofal volume of the deposit under the region D, and in

the second case, the average value ff(x) dx/|D| give the average value of a
D

quality parameter.

In the Kriging approach, it is presumed that f(x) and n(x) in (2.1) are
realizations of stochastic processes uncorrelated from one another with finite
second moments. It is further assumed that f(x) is a realization of an intrinsic

random function (IRF); that is, for some functions {®,(x)}/=; known to the

user and perhaps unknown constants a,, . .., a, for all x, h such that x, x+
+he X, one has
J
(2.2) E[f()] = 2 a;9,(x)
j=1

and, independently of x with “var” signifying ‘“‘variance”,

112 var [f(x+h)—f()] = »(h).
The constants {a;; 1=j=J} and the function y(h) are quantities which

must be inferred from the data {(x;, y,)}i=1. In what follows, it is presumed
always that J =<N. The function y(h) is called the variogram. Even in the case
in which the mean E[f(x)] is known to be constant in x (i.e., ] =1, ®, = 1),
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the hypothesis of “intrinsic random function” is weaker than second-order
stationarity. For example, Brownian motion is an intrinsic random function,
but it is well known to be a nonstationary process.

The Kriging method is composed of two activities, (i) inferring the va-
riogram from the data, and (ii) assuming that the inferred variogram is
exact indeed , providing a best linear unbiased estimator and associated error
variance, as required by Problem 1 or Problem 2.

Activity (ii) is a standard least-squares problem, and is consequently
by far the best understood of the two facets of Kriging. There are some in-
consistencies in the fundamental definitions and results in the Kriging litera-
ture. For example, the definitions of “‘intrinsic random function” given by
David [1] and Matheron [3] do not coincide. The discussions of noise and the
“nugget effect” have likewise been inconsistent. The equations for Kriging
in the presence of noise as given by Rendu [4], for example, agree with our
calculations, but differ from formulas offered by other authors (e.g. Journel
[2]). In view of these inconsistencies, we have elected to derive the “universal
Kriging” equations for prediction with known variogram from first prin-
ciples.

The task of inferring a covariance function or power spectral density
from data is known by experienced statisticians to be somewhat delicate, and
and one which furthermore requires a considerable quantity of data. The
subtleties of the covariance inference problem translate directly to the task
of inferring a variogram from data.

There are some very real difficulties with variogram estimation in the
published Kriging applications. To avoid effects of ‘‘non-stationarity”,
practitioners tend to have a single variogram apply only to a relatively small
region X of domain points of f(x), or we use different variograms in different
directions of h. Moreover, they have not developed procedures to ascertain
whether the intrinsic random function hypothesis is tenable for their appli-
cations. A particular difficulty is that in the bounded domain case, ergodic
theorems are inapplicable to the task of demonstrating consistency. To our
knowledge, with the exception of certain extreme cases such as white noise,
no methods for inferring the covariance function from sample pairs {(x;,
f(x))}, f(x) a fixed sample function are known to be consistent.

First, we concern ourselves with outlining the present practice with
regard to variogram inference. The recommended procedure is to choose a
parametric family of variograms from the five or six popular families mentio-
ned in the literature, and then to select the variogram from the chosen family
which agrees best, in some sense, with the covariance function constructed

from the data {(x,, ¥,)}i=1. We list in Table 2.1 some of the prominent vario-
gram families.

Monomial ye(h) = w(h)?
3
of 21O, e
Spherical yo(h) = 2 a 2\a
o, |h|>a

6%
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Exponential ye(h) = w[l—exp(—|h|/a)]

Gaussian ye(h) = w[l—exp(—|h|?/a®)]
where @ = (a, ).

Table 2.1. A listing of popular variogram families

There seems to be no consensus in the lit rature on methodology for
the selection of a parametric family from Table 2.1 on the basis of an obser-

ved sample {(x;, ¥;)}i=1. Some heuristic approaches are proposed by David
[1]. Concerning the task of selection of the member ye(h) the foremost
criteria seem to be

(i) least squares,
(ii) cross validation and
(iii) a geometric procedure [1].

In the least squares approach, one selects the parameter @* so as to nimi-
mize

11(@) = ?(Yn(hv) - ‘}’Q(hv))2

where the index v is running over some finite collection of arguments h,
and y,,(h) being some sample approximation to the variogram, such as

N(h)
8) = VNG 5 0,-300F)

where j(h) is an index selected so that |x;,)—x;| = h and N(h) is the number
of such points selected. If “drift” is thought to be present (that is, if @,
j=>1,in (2.2) is not zero), then this approach entails some serious conceptual
dlfflcultles Matheron [3, Chapter 4] has addressed these difficulties.

The cross-validation apprach to parameter selection is as follows. Let
P(x;, ©) be the universal Kriging estimate of f(x;) on the basis of the sample
pomts {(x ¥i)}li=; and parametric variogram ype(h). One then chooses O* to
minimize the squared error of the predicted values , which is

14(0) = 3 (= (0, )"

Practitioners insist, quite rightly, that one should not select a vario-
gram entirely algorithmically, but with attention also to past experience
with similar geological data.

Next, the linear estimation for f(x*) will be examined supposing that the
variogram is already known.

To begin with, suppose the noise term in (2.1) is zero. Let us assume that
the variogram y(h) and the mean function components {@,(x)}. of the expec-
tation (2.2) are given. The assumption that one of these functions, say @,,
is 1, seems to be a universal and perhaps unavoidable assumption which we
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will also adopt. To begin with, let us discuss the solution of Problem 1. The
objective is to choose the parameters {A}{L; so that the linear estimator

(2.3) INGEF) = A+ F AN
minimizes

E[(f(x*)—fn(x*))?]
subject to
(24) E[fn(&x*)] = E[f(x*)].

In view of the assumed form (2.2) of the mean value function, a sufficient
(but not necessary) condition for the unbiasedness equation (2.4) to hold is
that

n
(2.5) ‘;: APi(x) = ,(x*), I=j=]
Equation (2.5) with @, = 1, implies that
2 }'i = l.
i=1

Use this fact, with the unbiasedness of the estimator fy(x*) of f(x*) = f*, to
conclude that, with ‘““cov” signifying ‘“covariance”,

N 2 N
[72= 20 | =var |72 2 00) = var (220%-70)=
= 3 Zaeov iUy, (*-3))

o |

Now observe that
cov [(f*—y), (F*—y)] = 1]2[—var ((F*—y)—-(*-y))+
+var (f*—y)+var (f*=y)] = —y(x;—x;)+y(x* —x)+p(x* —Xx;).

One substitutes these into (2.6) and after some easy calculus, sees that the
Lagrange multiplier technique for minimizing E[(f(x*)—fy(x*))?] subject
to (2.5) yields

2.7) ﬁ,: Ay (X —x,) = 29(x;—x*) + i‘yjdij(xi), I=i=N
k=1 i=
(2.8) % 2@i(x;) = Py(x*), 1=j=].

i=1

The variables u, are the Lagrange multipliers, Journel [2] calls the above li-
near equation the universal Kriging system.
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Substituting (2.7) into (2.6), one concludes that the means square pre-
diction error is given by

E[(f*—fy(x%)?] = _z”la,y(x*—xo— iu;¢(x*)-
i= j=

If the noise term n(x) in (2.1) has zero mean, one accounts for its presence
by noting that, because it is presumed uncorrelated from the f-process,

cov ((f* =y (* =) = cov ((f*~fi=ny), (F*~f;=n) =
= cov ((f*—f), (f*—f))+cov (n;, n)).

In the above equation r; and f; denote r(x;), f(x;). As a result one readily sees

that in the presence of noise (2.7) should be replaced by the following rela-
tions:

N
> Ay(xi—x,) =2 cov (n(x,), n(xy)) = y(x;—x*)+
k=1
J .
+ D uPi(x;), 1=i=N.
j=1

Let us now investigate the modifications necessary for solution of Prob-
lem 2 described before. Assume f dx = 1. In this case, we replace the objec-

D
tive (2.6) by the task of minimizing

: D/ e 3y |

E[33y,] = E[ / f(x)dx].

D

subject to

The preceding Kriging analysis leads, in the integral estimation case, to
the following universal Kriging system;

N J
> A=) = / yo-0)dx+ S udi(x), 1=i=N,
29 b =
N
S A0(x) = f & (x)dx.
i=1

D
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The expected square error of the integral estimate is given by

E[[ff(x)dx— ,21 Aiyi]zl = Ig x;fy(x,—x)dx—

(2.10) b

_é 3 f & (x)dx —Df Df P(x—X')dxdx’.

Note, that equations (2.7), (2.8) and (2.9) can be solved by using standard
techniques (Szidarovszky and Yakowitz, [5]).

3. Convergence and consistency

As has been noted earlier, there is no consistent variogram estimator

based on observations {(x;, f(x;))}" for x; in a bounded domain X and f a
fixed sample of an intrinsic random function f. Note that f(x;) = y, in short,
the variogram cannot be consistently inferred, even if it is known to be a
member of a given family such as listed in Table 2.1. On the other hand, as
we will later demonstrate, under certain circumstances, the Kriging estimate
will converge, with increasing number of samples, to the correct value, even
when the variogram is not correct. An interpretation of these remarks is
that the Kriging method can be effective for estimating values on the basis
of noisy samples, but that the associated error estimate need not be consistent.

The fact that the estimate of the square error need not become more
accurate with increasing data is significant because Kriging practitioners and
their clients place great value on the error estimation feature.

Let us begin our analysis of convergence of Kriging estimate under the
simplest conditions by assuming that

(i) The observations are noiseless (n(x;) = 0).

(if) ¥(0) = 0, and y is continuous in a neighborhood of the origin.
(iii) There is no “drift”, thatis, ] = 1 and @, = 1.
(iv) The “true” variogram is known.

Theorem 3.1. Let X be the domain of the intrinsic random function f(x)
and assume the conditions above are satisfied. If the infinite sequence {x;} is
dense in X, then for any x* € X and for fy(x*) as in (2.3),

E[(f(x*)—fn(x*))2]+0 as N~ o.

Proof. In view of assumption (iii), for every i, ¥, = f(x,) is itself an un-
biased linear estimator of f(x*) and so for N=1

E[(f(*)—fn())* | = E[(f(x*) - f(x))*] = 2p(x*—x)).

Let x*(N) denote the member of {x,}IL1 which is closest to x*. By the assump-
tion that {x;} is dense, x*(N)—~x* as N - -, and therefore

@G.1)  E[AH) - ]=E[(J*) SN ] = 2p(c*—x*(N)).
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The proposition follows by observing that, in light of property (ii), y(x*—
—x*(N)) must converge to 0. O

The bound given by (3.1) is of some practical interest in itself.

The Browian motion process affords an example ef a situation in which
the best estimate is not consistent unless x* is an accumulation point of the
sample points {x,}. For Brownian motion is Markov, and the best estimate
of f(x*) will depend only on the points (x,, f(x,)) and (x,, f(x,)). where x, is
the largest domain sample less than x* and x, the smallest sample greater
than x*.

There are many common situations in which the hypothesis that {x;} is
dense in X will be satisfied. One important case is that in which the x} s are
selected independently according to a measure that assigns positive probabi-
lity to every open set (such as when the probability density function exists
and is positive).

Corollary. Let {x;} be the above dense sequence in X and let

ey = mMax min |x—x;|,
x€D 1=i=N

then (3.1) implies that
E[(fx*)—/n(x*))*]=2¥(en)
where it is assumed that y(h) depends only on the length |h| of vector h.
Consider now the general case, when J = 1. Let x}¥(/N) denote the mearest

point to x* selected from the finite set x;, ..., xy. Assume again that the in-
finite set {x;} is dense in D, furthermore the matrix

Dy = (P,(X(N)))j, i=1
is nonsingular. Let Ay be the solution of the equation
DAy =11
where
IT = (Dy(x*), ..., D, (x*))T.

Then the components of A5 obviously satisfy the conditions (2.5), and by
using the notation

Ay = (AT, ..., 4Y)
and the Cauchy inequality we get

L)~ o)) = B[ 16~ S || =

J

= (S e - )| |= 2j |12t~ (V).

Observe that inequality (3.2) implies the following theorem.
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Theorem 3.2. Assume that the assumptions (i), (i), (iv) of the previous
theorem hold, the matrix @y is nonsingular, the infinite sequence x;, X,, ... iS
dense in D, furthermore the lengths of the vectors 2y are bounded by a constant
not depending on N. Then for N -~

E[(/(<*) = fn(x*))*] 0.
The effect of the noise term n(x;) will next be discussed. Let the estimate
obtained from the exact functional values be

In(x®) = ZNIA,-f(x,-),

where A, is the solution of the Kriging equations. The estimate obtained from
the noisy data has the similar form:

In(xe®) = ,ZNIA,.[f(x,.) +n(x)].
The error is defined by the expres:si_on
£ = Fn(x*) — fn(x*) = ZNllin(x,.).
The expected value of this error is by supposix’;on
Ele] = SAE((x)] = O,

and the variance of the error can be given as follows:

E[¢?] = E[[iglin(xi)]z] = .-2 |2;]282.

In evaluating the convergence statements concerning Kriging in the
previous discussions, it should be emphasized that they are valid only if
f() really is an intrinsic random function and the variogram and drift func-
tions are known perfectly.

Our next discussion of Kriging convergence is directed to Problem 2 of
the previous section, i.e., the integral estimation problem. For Problem 2, as
has been observed earlier, one must modify the universal Kriging equation

development by replacing f* in (2.6) by f f(x) dx. The effect of this substitu-
D
tion is that y(x,—x*) and @,(x*) are replaced by f y(x;—x) dx and f D (x)dx
D D

in (2.7) and (2.8), respectively.
Let I(f) denote the universal Kriging estimate of f f(x)dx obtained by

D
the modifications just mentioned, and let f(x*) denote the Kriging estimate
of f(x*). Recall our assumption that fdx = 1. Tben we have the following
result. b
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Theorem 3.3.
1m=!mmu

Proof. One may express (2.7), (2.8) in matrix form as
A(x*) = A-1C(x*)
where A(x*) = (4, - .-, Any gy - -5 1))7,
¢;(x*) = 2y(x;—x*), 1=i=N,
Cjan(x*) = @;(x*), 1=j=],
A=y —=x)), 1=i, j=N; Ajini = A jin = Pi(%),
l<i<N, l<j<].
From (2.3), we see that if we define B = (f(x,), ..., f(xy), 0, ..., 0), then
Jn(x*) = BA-1e(x*).

Now it is clear from (2.9) that the universal Kriging equation for the integra-
tion problem may be represented as

I(f) = A [ e()dx = [BA-te(x)dx = [ fr(x)dx

and

and our proposition is established. O
The predicted mean square error was given in (2.10). But the following
evident result is useful :

Corollary.
£ (161 [ 1029 *|= sup Var (7y0).
Proof. By using the Cauchy inequality we get
4Um—[nmw]=4gmw%ﬂmwns
= sup E[(fn()~/(x)*] = sup Var (/y(x). O

REFERENCES

[1] David M.: Geostatistical Ore Reserve Estimation. Elsevier, New York, 1977.

[2] Journel A. G.: Kriging in terms of projections. J. Math. Geol. 9 (6) (1977), 563 — 586.

[3] Matheron G.: The Theory of Regionalized Variables and its Applications, Les Cahiers
du CMM. Fasc, no. 5, ENSMP, Paris (1971), 211 p.

[4] Rendu J.: Disjunctive Kriging: comparison of theory with actual results. Mathematical
Geology 12 (4) (1980), 305 —320.

[5] Szidarovszky F. and Yakovitz S.: Principles and Procedures of Numerical Analysis.
Plenum Press, New York, 1978.



