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Abstract. For randomly chosen ay, ..., a,€G, G=Z/nZ a finite abelian
group, and a random function g:G—~{l, ..., r} we analyse the recursion
Xi41 = X;+dgxy mod n. Let m:= min {jeN|Ji<j: x; = x;}. Under some
plausible assumption we prove the existence of constants dg=dy=...=
=d,=... such as the expected value of m is bounded by E(m)<d,- /g— n

for all sufficiently large n. Moreover lim d, = 1. This gives a practical way

for evaluating ord(h) for he G within O() ord(h)) group operations and a fixed
number of registers, each storing a group element. So far, deterministic

methods for computing ord(h) require in the worst case O(}ord(h)) group

operations and O(Yord(h)) registers.
The proposed method is useful in connection with factoring algorithms
of Schnorr and Lenstra [7] and the computation of indices, see Pollard [6].

1. Introduction
Let neN, Z,~Z|nZ and f:Z,—~Z, a function. The sequence
(1.1) X:=0, X,,:=f(x)i=0,12,...

is ultimately periodic. Suppose that x,, x,, ..., x,,_, are pairwise distinct
and x,, = x3, A<m. Then u:= m—21 is the period length of (1.1) and 2 is
the length of the non periodic segment of (1.1).

The mean values of A, x4 are known for random functions f:Z,~Z_; see
[4, exercise 3.1.12]:

1+E(u) = EQ)~ Vng 1/3.

5 ANNALES — Sectio Computatorica — Tomus VI.
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An example of a pseudo-random fuction f:Z, —~Z, is
J(x) = x24+1 mod n.

This function has been used in the factoring algorithms of Pollard [6],
Brent and Pollard [2] see also Guy [3]. The values of 4, u for this f oscillate

T
around §n.

In this paper we study pseudo-random recursions of the type
(1.2) Xip1:= X;+0ymodn i =0,1,2, ...

withg: Z {1, ..., r} a pseudo-random function and pairwise distinct a,, ...
..., a,€Z,. The corresponding sequence (X;);=0 is additively generated. This
recursion has been proposed by H. W. Lenstra, Jr.

A main problem is: What is the minimal number r of distinct terms
a, ..., a, necessary to generate a sufficiently randomized sequence (x;)i=0?
We show that r = 8 is sufficient to generate a sequence (x;)i=o With E(u),
EQ2) = O(Y n).

An important feature of the additive recursion (1.2) is, that such a re-
cursion can be done in any finite group using the group operation instead of
addition. The additive recursion (1.2) is computational efficient. x;,, =x?+1
mod n takes one multiplication and one addition in Z_ per iteration step.
One recursion step of (1.2) merely requires one addition and one evaluation
of g. We shall see that g can be chosen as a very simple function.

2. Analysis of F; = prob [31<j:x,=x; mod n| #{x,, ..., X;_1} = J]

The critical point of the additive scheme (1.2) is the commutativity of

the recursion steps. The commutativity implies that the number of distinct
values

2.1 x;—x; mod n, O=i<j=<k
as a function of k increases less rapidly than without this commutativity.
This increases m = u+ 4, since by definition
m = u+A = min {jEN|Ji<j: x;—x;=0 mod n}.

The chance of 0 occuring as x;—x; mod n certainly decreases with the num-
ber of distinct elements in (2.1). We like to measure this effect quantitati-
vely. With the recursion (1.2) we associate the following vectors

S;=(Sis - »S) i=0,1,2, ..
(2.2) S0, =0

5, o [Simtot 1 if g(x) =
" 1Si-1, otherwise.
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This implies x; = 3 Si,» a» mod n, i.e. x; = (S,, @) mod n with a =

= (a, ..., a)and (S,:_a)_the scalar product of S, and a.

A repetition x;—x,=xj—x mod n, j’<j in (2.1) in enforced (enforced
by the commutativity of the recursion steps in (1.2)), if §;,—8; = S;—Ss.

Note that §,—8; = Sj— 8y implies j—i = j’—i’. One of our main tasks
is to analyse the expected number of the enforced repetitions.

We introduce a randomized version of the recursion (1.2). Let Y,

i=1,2, ... be random variables which are uniformly distributed over
{1, ..., r} and mutually independent fori = 1,2, ....
Let the random variable a = (a,, ..., a,) be uniformly distributed over

Z', and independent of the Y.

Then the randomized version of (1.2) is
(2.3) X 1=X+amodn i=0,1,2, ...
with

) = {Y,. if #{xp ....x}=10+1
Y, if j=min {i’ <|xpr = x;}.

This randomized scheme can equivalently be defined by choosing the
function g:Z {1, ..., r} in (1.2) at random with equal probability n-" for
everyg.

In order to bound E(m) = E(u+ 2) for the recursion (2.3) we compare
the schemes (1.1) and (2.3). If f:Z,~Z, in (1.1) is chosen at random then
(1.1) implies

prob [ 1 Ji<jix;=x; mod n|#{x, ..., x4} =j] = n_;_].

From this we obtain, see Knuth [4, exercise 3.1.12]:

o sm= 2 g Y s
Now consider the scheme (2.3). Let
F; = prob [31<j: x;=x; mod n| #{Xo, ..., X;_1} = j].
The mean value of m for (2.3) is

(2.5) Em)= 2 (.1, (1=F))F

l=j=n

It follows that E(m) is decreasing on each F. Hence

Lemma 2.1. We obtain an upper bound on E(m) if we replace in (2.5) each
F, by alower bound on F ;.

b*



68 J. SATTLER-C. P. SCHNORR

So we need a lower bound on F; for j=m. We will exploit the fact that
a=(a, ..., a)in (2.3) is mdependent of the 8,—8;, 0=h<i=m. a is uni-
formly distributed over Zr. Let

Hy; = {yeZ;|(S,—5;, ,)=0 mod n}
T; :={H,;|0sh<i<j}
Mx):= #{(i, h)|0=h<i<j, x€H,}.
If nis prime then H,, ; is a random hyperplane, # H, ; = n"~% In genaral
#H,; =n~1gcdby, ..., b, n),
where S, -8, = (b, ..., b,).

Lemma 2.2. F; =— Z’ prob [H, ;¢ T;]-prob [M(a)=
I<j

= 0lacH, ;¢ T,]/prob [M,(a) = 0].
Proof. F; = prob [31<j:x;=x; mod n|#{x, ..., X;_1} = j] =
= pl‘Ob [aE U.H,'jlaQ U _Hh,i]

= prob [aEUHI]\ U Hhr]/ prob [an\ U Hhi]

Using H, ;N H, ;C H, , which follows from §;—8;, = (S;— j)— Sk—=5S)
we conclude

2 prob [aeH,J\ U H,,,]/prob [an\ U H,,,]
Since M(a) = O@a¢h<LiJ<j11h’,.:
= % prob [M;(a) = 0, a€H, ]/ prob [M(a) = 0] =
= gj prob [H, ;¢ T ;] prob [M(a)=0, acH,;|H, ;¢ T ]/prob [M(a)=0] =
= 12<, prob [H,;¢T ] prob [M(a) = OlaeH,;4T;] =

= prob [aEH,’le,'j({Tj]/prob [Mj(a) =0] =
= 12<, prob [H,;¢T;] prob [M(a) =

= 0la€H,;4T;]/prob [M/(a) = 0]. O

In the remaining part of this section we give support to the
Conjecture 2.3.

prob[M(a) = O]=prob [M(a) = OlacH,;4T,].
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For the proof of the main theorem 3.9 a weaker statement than Conjec-
ture 2.3 would be sufficient, namely the existence of constants e, with lim

e, = 1 such that o
prob [M(a) = 0]

2.6
(2.6) prob [My(a) = Ola€H, ;¢T|] =¢r

Since M(a) only depends on S,—8; with 0=h<i<j, and H,; only
depends on S;—S, Conjecture 2.3 would hold with equality provided that
S is independent of S, S,, ..., S;_,. However since |S;—S;_,|=1, S; cle-
arly depends on §;_,. Conjecture 2.3 means that the condition (S-S, a)=0
mod n disfavours the existence of h<i<j such that (S; —8;, @)=0mod n.

The difficulty in proving Conjecture 2.3 is due to the complicated nature
of prob [M,(a) = 0] which is defined by the inclusion-exclusion principle:

prob [M](a) = 0]=E[1- n—r[h 2 ¥ Hh,i - ZHM, iV Hhy, i, +

<l<j

2.7
@7 + 3 4% Hay i,V Hg, iy N Hig, iy— + - - - 1],

where the »-th sum ranges over all pairs (hy, i;))<(hy, &)< ... <(h, i,) with
h,<i,<jfor u =1,...,» and the pairs (h,, i,) taken in some order “<".
This expression has to be compared with

(2.8) prob [M(a) = OlacH,;4T,;] =

=E[1_

1
[ Z_'.#Hh,iﬂHI,j_Z#th,l'lﬂth,izﬂHl‘j"'—...]].
#H"j h<i<j

In comparing (2.7) and (2.8) we restrict to the case that n is prime. In this
case the first two terms of (2.7) and (2.8) coincide. Note that

#Hz,; = #H,; =n""1 and #HMQHU = nr-2,
We are able to prove
(2.9) n—’E[Z * th' i n Hh2» "2] = n—r+lE[2 # Hhh i N th, iz N HI,]].

We argue that this relation dominates the influence of the further terms of
(2.7), (2.8) and consequently proves conjecture (2.3).

Lemma 2.4. For n prime and r=2:

Proof. The first equality holds since a is independent of the event
[H,, ;¢ T;]. For the second equality note that

@10y EMAOIH T = 5 E[#Hp|Hy 8T Jn" =

= 3 E[#H,NH,,|H, 4T Jn""+* = E[M(a)|acH, ;¢ T,].

h<i<j



70 J. SATTLER - C. P. SCHNORR

In fact (2.10) holds since # H, ; = n"~* and

fl'_l lf Hl.j = Hh.i

b {n"2 otherwise.

This also shows that the condition H, ;¢ T ; is necessary.
We define

0 otherwise.
Hence

E[M(@)] = prob [M,(a)=1]+E[M}(9)] =
= 1—prob[M (a) = 0]+ E[M}(a)].
Lemma 2.5. For n prime and r=2:
prob [M(a) = Oja€H,;¢T,;] = prob [M(a)

= 0]+

+E[M7}(a)la€H, ;¢ T ;|- E = [M7(a)].

Proof. 1— prob [M(a) = OlacH, ;4T ]+ E[M}(a)|acH,;4T;] =
= E[Ma)|a€H,;4T;] = E[Mya)] =

= 1— prob [M/(a) = 0]+ E[M¥}(a)].

Lemma 2.5 means that the first two terms of (2.7)

1sv=k

condition a€H, ;¢ T ;. This shows that for k=3 the k-th term in (2.8) is ab-

solutely greater than the k-th term in (2.7).

Lemma 2.6. For n prime, r=2, and h,<i,<j:

and (2.8) coincide,
and it remains to compare the further terms. In order to prove (2.9) we show

that the event [a€ N Hhn, ] for k=2 becomes more likely under the

prob [a€ N Ha,i) if k=1

1=v=k

pl‘Ob [(16 m Hh i laEHI,]QTj]{ 1=v=k

Proof. Consider fixed values Si,, Sx,, S}, S for Si,, Sh

Hh z,H,,for Hh, ‘,H,j Let d =dim N H;.

l=v=k

> prob [a€ N Hn,i] otherwise.
l<a=k

» S5 Sy, and

i,. Then

m ﬁhv, l’v ¢ ﬁ’,j

Svs

— né-r if
prOb [aF n Hh llaEHl’]QT]] = 1=vsk
ni*+d-r otherwise.
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These equalities imply
prob [aE1 N th ,i,Ja€H, ;4T ;] = prob [a€ N Hn,]-
==

si’s

(1+(n-1) prob[ m thi,CH,,j]).

For k =1 the event H,,cCH,, is excluded by the condition H, ;4T
For k=1 the event N Hhy,i, is quite likely for particular indices h,, 1,,

1=svs=k
v=1,...,k. Clearly
o N an 4, CH, jS,—S,€ span {Sn,—Si,, »=1, ..., k}

For example for k = 2 we have
Sj_sl = Sj—v—sl+si—si—vc>sj_sj—v = S,""Sl-v-
This implies for j=i:
prob [H;_,,iNHii—CH,;|H ;4T ]=r"".
The main conclusion of Conjecture 2.3 is
Theorem 2.7. Assuming Conjecture 2.3 we have for r=2:
n I<J

Following Theorem 2.7 it remains to prove lower bounds on prob[H, ;¢ T}].

3. Lower boundson prob [H, 4T ]

The definitions of H, ; and T imply
3.1) H €T 3acl}: Jh<i<j:§;—8§=a(S;—S;) mod n,

where Z* is the set of invertible elements in Z .

The case « = 1 will be treated in Lemma 3.5, and the remaining part of
this section deals with the case « > 1.

Remember that S;— 8, = 8;,—8, impliesj—I=i—h. For > i,=k, i€N,

l=v=r
we have:
. kir—k
prob [S].—Sj_k =, .. 0)]= _—1 o
i)...i!
kir-k | .
LetP,,—MAX[ —‘21,=k.
11 V| 1svs=r

Lemma 3.1. For the randomized scheme 2.3 and for k<j :
prob [3i<jiS; =8k = S;=Siekl= 2 Pr+iPe
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Proof. For i<j—k: prob[S;—8;_, = 8;—8;_x]=p,. On the other hand
Sj_Sj—k = Sl_Si—k‘”Sj_Si = Sj"k—Si—k
implies for i<j—k:
prob [S;—S; = 8§ —S8;_] = prob[S;—S; = §;_, =S, ]=plj—il.

Lemma 3.1 is an immediate consequence of both bounds. O
We need bounds for the p,. Note that the sequence (p,)x =1 is monotonously
decreasing and is bounded as p, <k! r—*. Moreover

(v-r)!
oY

(3:2) VveN:p,., =

o

Stirling’s formula implies
Fact 3.2.

¥ vEN: p,., =< r%5(2mp)1—n2e1/(12r)
Fact 3.3. Forr=5:
> Pe=r-142r-2430r-3—96r-4+1 .35,.1.5(2”)(1-,)/2.

1sk=se

Proof.

2 b= 2 lPk+ > M=

I=k=o I=k=r— rsk=e
=r7142r7246r734-24r74 4+ 24(r—5)r=44+ 3 r-2%py =
Osk=o
=r=142r-2430r=3—-96r—%+ 1.35r1-5(27)2-"/2, O
Fact 3.4. For r=8 and k, j=3r- j¥—1 we have
Jepe=r—15. (2m)a-nre,
Proof. By k=3r j¥-1 Fact 3.2 implies

jpe=j p[k/2r]-r5j‘ ro5. (2“)(1-r)/2 j3. el/(12r) < p—15, (27:)(1")/2.

The last inequality holds, since j=3rj® -V implies j=3r. O
Combining (3.1) to (3.4) we obtain

Lemma 3.5. For r=8 and k, j=3rjs/c—1:
prob [Ji<j:5,~S§; = S§;—S;_4]=
=r7142r2430r=3+ 96r—* + 1.36r1-5(2n)1 "2,
Proof. We have by Lemma 3.1
prob [Ji<j:§;—8; ;= §;—S;]= 1£§kpv+fpkv
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and by the Facts 3.3, 3.4 we obtain for the right-hand side of the above ine-
quality

=r714+2r72430r=3—96r=4+ 1.35r1-5(2m)1~"V2 L r =13 27)A-"V2 <
=r~142r=24+30r-3+96r=4+1.36r527)*-"2. O
The case « = 1 in (3.1) will be treated in Lemma 3.6.
Lemma 3.6. For r=8, j=3r)r—Y-?, gnd [<j—3rjs/c—1:
prob[Ja€Z\{1}, Ih<i<j:S;— S, = «(S;—S;) mod n]=
= ro,5(2ﬂ)(1—r)/z el/nar),
Proof. Let r=8, j=(3r)¢~Y=7, and let [=j—3rj%"~1 be fixed.
prob [JaeN\{1}3h<i<j:§;—S, = «(S;—S;,) mod n]=
= r°'5(2n)(1"’)/2e1/(12’).
Hence
3.3) j—lc3twitht:= r /-,

We distinguish 4 cases for h, i, and in each case we prove for fixed A, i and
a=2:

prob [8;—8; = «(S8;—8,) mod n]=p,.

Let h, i range over the integers <j, and let « range over {(S,,—5,,)/8|8=J}.
We obtain

prob [Ja€Z,\{1}, Ih<i<j: ;=S = «(S;~S;) mod n]=
= p,J3 =r"5(2m)1—r)/2e1/A20),

The latter inequality follows from Fact 3.2 and { = r j®/¢~1, This proves the
lemma. Here are the 4 cases for A, i:

Case 1. i<l

| !
h i

I
'1 j

Since i=l, S;—.S, is independent of S;—S,,. Hence for fixed h, i, a:

prob [S;—S,=«(S;—S;) mod n]=p,_,=p;
Case 2. i=1, j—i=t

| |
h i

~
~..

Obviously,
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8;—8=a(S;—8,) mod ne8;—8;=u(S;—8y)+ (x—1)(S;—8;) mod n.
Since S —8; is independent of S, S,,, S;—8,, it follows for fixed h, i, «

prob [Sj Si=a(S;—8;) mod nl=p;_;=p,.
Case 3. i=1, j—i<t=h—I

h i

| )
Obvnously,
Since S,, S, is mdependent of 8;— S,,, S =8; it follows for flxed h, i, a:

prob [S;—8,=«(S;—S,) mod n]=p,_,=p,

Case 4. i<l,j—i<t, h—I<t
[— )]

h KW i ]
l ]
Let o := 1+t and i’ := j—t. Then (3.3) implies
i"—h =t.

Obviously,
SI—S, = «(S;—8,) mod neSy—Sp=
{(a—- D71 —a)(S;—Sr+Sw—S8,)+S;—8;+S,—S, mod n if h=1
(@@= =a)(S; =S¢+ Sw—S8)+8;—S8;—a(S;—S,)] mod n
otherwise.
Since Sy —8y is independent of 8;—Sy, Sp—S,, 8;—58;, and of S,—S; (of
8;—8r, Sw—18;, 8;—8;, and of §,—8,, respectively), it follows for fixed h, i,

a=2:

Il

prob [S;—8;=«(S,—S,) mod n]=pr_w=p,. O
We are now able to prove
Lemma 3.7 For r=8 and j<m we have

1%" prob [ﬁ,’jQTj]z(j_3rj6/(r—1)).

(1= r=1—2r=2—30r=3+ 9674 — 1.5715(2x)1~"/2),

Proof.
12<, prob H,;¢T;]= Isj—%s/(r_l) (1—prob [H, ;€T ;)=

== 3rj¥r-V)(1 —r~t—2r=2—30r—3+96r—*—1.36r1-5(2z)1-"/2 -
- r0.5(2n)(1—r)/281/(12r)) =

= (j— 3rjer=D)(1 —r=1 — 2r=2 — 30r=3 4+ 964 — 1.5715(2m)1-N2).
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We conclude from Theorem 2.6 and Lemma 3.7

Proposition 3.8. Conjecture 2.3 implies the existence of ¢,, 0<c, <1 of
d,. €N for r=8 such that

)  F=j-c)n for all j with d, =j=m,
2 lime, = 0.

r— oo

Proof. Put d, : = r'4. Then, by Theorem 2.6 and Lemma 3.7, we have for
all j, d,=j=m:

Fj=jin(1=3[r)(1 =r=*—2r=2—30r=3— 1.5r3(2m)~"72).
This clearly proves the claim with ¢, defined by

l1—c, = (1-3/r)(1 —r~t—=2r=2—30r3— 1.5r1-5(27)1-"72), |
By Lemma 2.1 Proposition 3.8 yields
- { r)
(3.4) E[m]= . gé,.’ [drégj 1 ] (1-

A comparison of (2.4) and (3.4) yields the
Main Theorem 3.9. Assuming Conjecture 2.3 we have for all r=8:

E[m]= l%cr%n(l +0(1)) +d2.

Here 1+0(1) stands for  J] [1 _id= ’)] ; for each r=8 this
AL n

l=i=d,

term convergesto 1 as n—~es.

Remarks. (1) E[m] in Theorem 3.9 is a mean value for all choices of
(ay, ..., a)€Z; and g. So far Theorem 3.9 does not say anything about a
particular choice of q,, ..., a,.

(2) Our experiments with the recursion (2.3) indicate that there must
exist corresponding constants c,, ¢;, ¢, ¢;<1, see Table 5.1. The existence of
¢;<1 is open, and c, does not exist. It can be shown that r = 2 in (2.3)
implies

E[m] = Q(n??3).

Thus, two additive terms a,, a, are not enough for randomizing scheme (2.3).

4. Applications
4.1, Computing the order of group elements

Let heG be an element of a finite group with an efficient multiplication
procedure. Determine ord(h) as follows:

1. Choose a,, ..., a,€Z,, g:G—{l, ..., r} and hycG at random with
n=|G|, r=8.
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Table 5.1
10!
k14
, 104 105 108 107 108 /VE 108

2 397 1989| 8992| 61705 | 268149 4279
3 146 424 | r515| 5411 | 18602 3.02
3 146 424 | 1515| 5411 18602 3.02
4 04 276 892 | 2479 | 9448 1.50
5 76 242 846 | 2287 | 8459 1.23
6 75 242 719 | 1983 | 8682 127
7 72 217 712 | 2600 | 7494 1.20
8 1 221 692 | 2178 | 6239 1.02
9 70 219 707 | 1952| 6169 1.01

10 64 206 721 | 2203 | 7044 1.27

11 68 253 630 | 2436 | 7608 1.02

12 66 206 746 | 2086 | 7171 1.14

13 63 215 696 | 2962 | 60962 1.12

14 71 208 657 | 2001 | 7377 1.15

15 66 240 504 | 1811| 5044 0.95

16 56 209 685| 1811 | 6577 1.04

E2 ] 62 108 626 | 1981 | 6266
8 n

2. Recursively compute

Biyy:= h;-h%®D fori=0,1,2, ...

until some i <j has been found with h; = h;.

(By Theorem 3.9 we can expect that there exist l<_]<VOI'd(h) with
h; = h;. By Brent’s method such a pair can be found in keeping only
one h, "stored. Hence we find i, j with a fixed number of registers

(each storing a group element) and with O(Yord (h)) group opera-
tions.)

. Compute T = 2’ Ag(h,)-

+1svs=j

(Note that h; = h; 1mphes ord(h)|T.)

. ord(h) can be detérmined either as the ged of several of such multip-

les T of ord(h) or by factoring T and by splitting off unnecessary
factorsof T.

Previous methods for computing ord(h) require Yord(h) registers, see

e.g. baby-giant-step method of Shanks [8, p. 419].

4.2. Factoring integers by computing ambiguous classes
of quadratic forms

In the recently published paper of Schnorr and Lenstra [7] one tries to

factor neN as follows:

Choose a multiple —n-s of n which is a discriminant. Compute a non-

trivial ambiguous class H (e.g. H? = 1, H> 1) in the class group of quadratic
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forms with discriminant —ns (According to Gauss these ambiguous classes
correspond to the factorizations ns = s, s, with ged(s;, s,) = 1.) as follows:

Choose an arbitrary class F in the class group. Compute the order of F
as in 4.1 If ord(F) is even, then Ford(F)/2 js a non-trivial ambiguous class.
The method 4.1 has been successfully applied in this case.

4.3. Computing the index mod p

Let b be a primitive root of Z,. For every a€ Z} there exists a unique i,
0<i<p, such that a=b' mod p, i is the index of a with respect to b. We pro-
pose a Monte Carlo method according to Pollard:

1. Choose random integers a;, ..., a,, by, ..., b;¢Z,_, and pseudo-random
functions f:Z, {1, ..., r}, g: Z,~{1, ..., s}, s=T.
2. Recursively compute

hyyyi=h-a@D . p%E) mod p i=0,1,2, ...

until some i~ has been found with h; = h;.

(By Theorem 3.9 we can expect that there exist i<j=}p with b =h;.
By Brent’s method such a pair can be found in keeping only one h, stored.
Hence we most likely find i, j with a fixed number of registers, each sto-

ring a group element, and with O(Y/ p) group operations.)
3. Compute T, = > asny, Ty= 2 beny.

i+l=v=j i+1=v=j
(Note that h; = h, implies a™"a = b'®)
4. Most likely we have T, 0 mod p— 1. In this case

a= b—TbTa‘l mod (p—1)

Hence — T, T;* mod (p— 1) is the index of a with respect to b.

4.4. Suitable pseudo-random functions n: G~{1, ..., r}

For G = Z/nZ we successfully applied functions of the following type.
Choose a small prime p with r<p<n and let

g(b) = [(b* mod p)-r/p]+1.

Also by our experience it is not nenessary to choose a,, . . ., a,€ Z, at random.
Even reqular sequences like a,=c¢"+ mod n, i = 1: ..., with fixed ¢ and »
work well.

However, it is necessary that the size of the a; mod nis well distributed

over {1, ..., n—1}. If all residues a; mod n are small, then the method can-
not work.
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5. Some experimental results

Our experimental results with the recursion (1.2), see Table 5.1, show
that the main Theorem 3.9 already holds provided that at least four additive
terms are used, e.g. r=4. The table shows the average behaviour of the period

length u. We obtained mean values for  which are <g, I/ % n with ¢,;<1.5

and ¢;,=1.05.

For r = 2 the average u roughly increases as n%3. The table is not con-
clusive for r = 3, ¢; may be a function which slightly increases with n.

The additive terms

a, = 151313669 g, = 989209282
a, = 1167 832084 4, = 903322227
a, = 218048340 a,, = 2 113687 555
a, = 1613921 385 4, = 475347718
a5 = 584 867 687 4, = 522890323
4, = 532455900 a,, = 2092 819 987
a, = 963669 779 4, = 328337024
ag = 930011267 4, = 880 150971

have been generated by an ordinary Pollard-Brent recursion. The recursion
(1.2) was done with the function

g Z,~{l,...,r}, b—[(b*mod p}r/p]+1

with p = 104 879 a prime.

The entry in column 10? and row r of Table 5.1 records the average period
length u over the hundred values n = 10i+1, ..., 104 100. For comparison
the last row gives the wxpected values of u for a pure random recursion

E[u]l=~ l/ %n. The last column records approximations for ¢,: the entry of

the 108-column is divided by l/ %n.
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