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The first part of the paper gives two theorems for characterization of
the best Chebyshev approximations (the basic idea of Theorem 1.1 can be

found in [1]). In the second part we shall give possibilities of the numerical
application of Theorem 1.2.

1. On the characteristic properties of the best
approximation

The fixed symbols are as follows: [a, b]JCR, a closed and bounded in-
terval; f(x), a continuous function on [a, b]; n denotes a natural number;
£1(x), g:(x),..., g.(x), a Chebyshev system of the continuous functions on
[a, b], i.e.

gi(x) - g(xn)

>0

g’l(xl) s gﬂ(xfl)

ifa=sx,<x,<...<x,=<b;

A}, ..., A}, the coefficients of the best Chebyshev approximation, i.e.
max | Afgy()+ .. + Alga() —f(9)] <

x€[a,b

< max |Ag(X)+ ... +Ag.(X)—f()],

x€[a,b]
where A¥={A}, ..., A¥}eR", A={A,, ..., A }J€R" and A*= A;

Q%
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xt, x¥, ..., x¥,,, aset of the extremal points, i.e.
Atg (X)) + . . .+ ARg(xF) —f(xt) =
=—(Afn (P4 )+ -+ ARG () —S(xP) (=1,...,n)
and
| AR () + - . . + ARg(xF) —f(xF)| =
= max][A;‘gl(x)+ o AXg () -f(X)| (=1,...,n+]1)

x€[a, b
where a =x¥<x¥<...<x¥,,=b.
Theorem 1.1. The problem
a=X;<Xp<... <xn+lsb

S1+S+ .. Sy =1
5:81(%1) =221 (Xg) + - - - + (= 1)"Sp4181(Xn41) = O

8:18n(X1) = Sagn(X2) + - - - + (= 1)"8p418n(Xp41) = O

1820 (%)) =S (Xg) + - - . + (= 1)"8,41f(Xp41) | ~max

is solvable and x¥, ..., x¥%,, is a set of the extremal points for each solution
st sk x¥ b
1) 2 °n+b *1r ¢ty *n+l

Proof. Since g,(x), . .., g,(x) is a Chebyshev system, therefore the matrix

1 1 - 1
g1(%1) —g1(%2) - - - (= 1)"81(Xn+1)

_gn(xl) —gn(xz) o ( - l)ngn(xn+1)_

is nonsingular if a=<x,<x,<...<Xx,,,=b. From the equations of the con-
ditions we can see that

1 - 1 1 1 e
gi(x). (= 1)%(x—1) 0 (= 1)'gu(X;41)- - -

0<S‘= <1,

det G
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for all a=x;<x,<...<Xx,,,=b. Now let s={s;, s, ..., s,4,} and S=
={8y, Sy -+, Bpia} = S, —8, ..., (= 1Sppad I 83y ooy Sppny Xy o0y X
satisfies conditions of the problem, then

[s1f(x) = $of(X0) + - - - + (= 1)1 S (Xp40)| =

:'ﬁl‘f(x,)s.« \ -

=

= |3 (atece .. + At -1x)S,

n+l1
= max |Afg,(x)+ ... + A%ga(x) —f(x)| 3 |Si| =
i i=1
= max |AYg () + . .. + A¥ga(x) —f(%)].

Equalities are in places of the inequalities if x,, . . ., x,, is a set of the extemal
points. O

Theorem 1.2. Assume that f(x), gi(x), ..., g.(x) are continuously differ-
entiable on [a, b] and a, b§ X*, where X* is a set of the extremal points.
Then the elements x¥ <x¥<...<x*,, of X* satisfy the system of equations

g1(x)Dy(xy, - - s Xpy) 4 - - - HE(X)Dp(Xyy - - -y Xpg) =

= f/(x)D(Xy, . . -y Xp41), (i=1,2,...,n+1),
where

I gi(x) - -8.(x)
-1 gi(x%) ...gu(x)
D(xl, e -,xn+1) = * * ‘ ’ Dl(x17 .o '!xn+1) =

(— l)"gl(xrw-l)' . 'gn(xn+1)

1 f(x) g(x1) - -ga(%1)
=1 f(x2) ga(x2) - -gn(Xa)

y oo s Dp(Xyy o o oy Xpyy) =

(= DY (Xp41)82(Xn+1) - - -8n(Xn+1)

1 gi(x) - -gna(x) f(x1)
=1 g(xy) . -guoa(X2) S(X2)

(= D"g1(Xn41) - - -Zno1(Xn4)S (Xn41)
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Proof. If we determine s¥, .. ., s*,; for the sequence x¥<xf<...<x},,
from the former formulas, then we get a solution of the problem of Theorem
1.1.

Since s¥ and x* are inner points of the intervals [0, 1] and [a, b] (i =

=1, ..., n+2), respectively, therefore s¥, ..., s¥, ,, x¥, ..., x*,, satisfy
the Lagrange’s conditions for

F(Spy - s Spanr Xy « - 1 Xn41) = S () — - oo + (= 1)"8040f (Xn41) +

+C (8 + - - Spr = D) +HCo(s181(x1) — - - - + (= 1)"854181(Xn42)) +
+ oo+ Crpa(S18a() — - - -+ (= 1), 4180(Xn41)), i
Fs =0, Fy, =0 (i=1,...,n+1).

Hence

Jx)+Ci+Cogy(x) + . .. +Crpan(x) = 0

—J(x2) +C = Coy (X5) — - . - —Cpis8n(Xy) = 0

(=D (Xp41) +Co+ (= D"Coy(Xna) + - - - +(—1)"Cry1fn(Xas1) = 0
and
5.7 (x) +8,Cog1(x1) + - - - +58,Cr4a8n(Xy) = 0
— 5/ (%2) = 8,Ca81(X5) — - - - —$5Cpn4180(%5) = 0

(= 1)"Sp41f (Xn41) + (= 1)8741Co1(Xn4) + - - - +
+ (= 1)"$241Cn+180(Xn+1) = 0.
If we determine C,, C,, ..., C,,, from the first system of the equations and
we use these values in the second system, then we get the system of equations

of our theorem. (Since s, #0, we can divide the equations of the second sys-
tem by s;!) O

Remark. If aeX* or beX* or a, be X¥, then xf = a or x*,, = b or
x¥ = a, x¥,, = b, respectively.
Therefore from

Foy=0(@=1,...,n+1), F(=0 (=2 ...,n+l)or
Fo=0(@=1 ....n+1). Fy=0(=1,...,n)or

Fi=0(=1,...,n+1), Fg=0 (=2 ...,n)

we get a result similar to Theorem 1.2.
The results in case g,(x)=1, gy(x)=x:
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1) If a, b¢ X*, then

11f(xF) 11xe . .
~1 176 = ran| -1 1t |oren = LDy 0 3),
11 f(x¥) 11 x* et

) If ae X* and b¢ X*, then

11 f(a) 11a .
S11fe) [=ran| 11 feren = 1@ g,
11f(x%) 11 x* Xs—a

A3) If a¢ X* and be X*, then
raty =LOZIED, 1,

(4) If a,beX*, then
f’(x§)= f(b) _f(a) .
b—a

These results give a simple geometrical information about the extremal
points.

2. On numerical applications of Theorem 1.2

Assume that a, b¢ X* (the other cases are similar). We shall use Theorem
1.2 in two versions:

(1) If f(x), ga(X), - - -, ga(x) are twice-continuously differentiable and we
have a suitable approach of sequence x¥<x¥<...<x%,,, then we can com-
pute x¥, ..., x*,, by Newton’s method (Af, ..., A¥ is easily computed from
x¥, ..., x*,,). Here we apply the Newton’s method to g,(x)=1, g,(x)=x, as
follows:

11x 11 f(x;)
FEN -11x|-]-11fx)|=0 (i=1,2,3)
11 x 11 f(x3)

and the elements of the Jacobi matrix:

11x 001 00 f(x)
Ju=J ') =11 x [+ -1 1x|—| =11 f(x) |=
11x, 11 x, 11 f(xg)

= 2(x3— %) /" (%),
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11 x 11 f(x)
Jiz=S(x)]001 [-100 f'(xy) | =0,
11 x, 11 f(x3)
Jiz= 2(f ()= f"(%3))s Ja = 2(f "(x)—f '(xz)):
J2 = 206—%)f" (%), Jaa = 2(f' ()= f (%))
Ja = 2(f'(x))— f'(x3)), Jua =0,
Jas = 2(x3—x1) " (x3)-

Hence

(X3 —x;)f" (x,) 0 J'(x)=f(xs) || ¥1—%
Fx) =T (%) (Ga=x)S"(xa) J'()=f'(x3) | | Xa—%z | =
J(x) =1 (%3) 0 (X3 — %) 1" (x3)

=

3— X3

J(%3) —f(x1) — (X3 —x;) f'(x1)
= | f(X3) —f(x)) — (X3 —x,).S"(x2) |,
J(xX3) = f(x;) — (x3— x1_)f "(%3)

where x;, X,, X, and X,, X,, X; are ‘‘old and new approach” of x¥, x¥, x¥, re-
spectively.

2) If f(x), g1(x), - .., g,(x) are thrice-continuously differentiable, then
we can look for the solution (solutions) of our system of equations in some
intervals a,=x;=b,, ..., Q41 =X,4,=b,, (@<a,<b<ay<...<a,,,<
<b, 4, <b) of R**1 by method of [2]. (This method does not require an initial
approach of x¥, x§, x3.)

Numerical example. Let [a, b] = [—1,5; 2],
J(x) = Ixt—4x3—12x%, gi(x)=1, g(x)=x.

From the graph of f(x) we can see that a, b¢ X* (f(x) has local minima at
(—1) and 2, local maximum at O; furthermore f(— 1) = -5, f(0) = 0, f(2) =
= —32). If we use the Newton’s method with initial approach x, = —1,
x, = 0, x; = 2, then for the first approach of the unique solution: ‘

108 0 OffXx+1 -27 X, = —1,25,

o -72 o||% |=|-27|and %, = 0,375,
0 0216[]|%-2 —27 %, = 1,875.
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We can get from Kantorovich’s theorem (used for the second approach) that
| X® — x*||.. <0,0007, where x®~{—1,2018; 0,3325; 1,8609} is the third ap-
proach of the exact solution x* = (x§, x¥, x¥).
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