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1. Introduction

— n
Let X;, X5, ..., X, be a random sample of X and let X = n~* 3 X,
i=1

denote the sample mean. If X has expectation x and variance o2< « then
Chebyshev’s inequality gives

P(|X —u| >A0)=(nA%)-1 for every i>0.

The upper bound appearing on the right-hand side has the following advan-
tageous properties: it is valid for a large class of distributions and it tends to
0asA—oo Or n—>oo.

If the scale parameter ¢ is not known, it is often replaced by its estimate

2= (3 - R 1)]”2.

i=1

This substitution, called studentization, involves the problem of giving
uniform upper bounds on the probability of the event {|X—pu| >As,} for
general classes of distributions of X. In the wording of Birnbaum [2]:

“For many years statisticians have from time to time given some
thought to a question which may be called the ‘problem of a studentized
Chebyshev inequality’, and which can be stated as follows: is there a
sequence of functions ¥ (1), decreasing to 0 as A~ + «, such that

(M P(IX —p| > As,) = ¥o(A),

no matter what probability distribution X may have? To the author’s know-
ledge, no answer has been given to this question.”

Several papers are devoted to Chebyshev type inequalities in case of
estimated parameters. Most of them deal with estimates for 4 and o other

than X and s,, evading thus the original problem. In [1]— [4] order statistics
are used and nice inequalities are obtained in the case where u and o are
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estimated by the sample median and the interquantile range between two
sample quantiles, resp. The aim of the present paper is to characterize wide
classes of distributions for which a studentized Chebyshev inequality of type
(1) can be given. Specializing our results we obtain a uniform bound for all
unimodal distributions with mode u, not supposing the existence of any mo-
ment.

2. Upper and lower bounds
First we give two sided estimates for the probability
@) P(|X| > As,/Vn),

roughly speaking, in terms of the logarithmic concentration function. Since
we do not wish to require moment conditions, the location parameter u can-
not be identified with expectation. Without loss of generality we may assume
u = 0, due to the invariance of the problem under translation. Further, use of
(2) can be made in particular when estimating the tail probabilities of the
distribution of Student’s statistics ¢ = Yn X|s, for a non-normal sample.
This is why the norming factor ' n appears in (2).
Let us define

K*(h) = supP(X>0, x<logX=x+h),
x

K=(h) = supP(X<0, x<log(—X)=x+h)
and :
K(h) = max{K~(h), K*(h)}.
This latter can be considered as the logarithmic concentration function of X.
If P(X = 0) =0, thus log|X| can be interpreted with probability 1, the
concentration function of log|X| lies between K(h) and 2K(h), for every
h=0. K*, K- and K are increasing functions of h. Put
lim K*(h) = P(X>0) = ¢+,

h—+

lim K-(h) = P(X<0) =q~,

h—+

and
lim K(h) = max{g*,q7} = ¢.

h—+

Theorem 1. For A>n—1 and t>1

2 \-1/2 _ _ -
(3) Kn[[] _,_}‘—] ]ép(|x| - n/}/n)érKn—l[t*M_
2(n—1) A—(n-1)
where ©* is the number conjugated to v, and defined by L+L* =1.
T T
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This theorem asserts that a lumpy distribution of X causes a heavy tail
of Student’s t.

Next we describe those classes of distributions, denoted by (#, for which
¥(2) = sup P([X|>1s,/Vn)
XeF

tends to 0 as A~ «. First, let ( consist of a single probability distribution.
Since lim K(h) = max P(X = x), it is sufficient to require the continuity
h-+0 x=0

+
of the distribution of X everywhere but at 0. (This is obvious without refer-
ring to Theorem 1, because if X takes on a non-zero value with positive pro-
bability, then it is possible that s, = 0 and at the same time X > 0.) For
larger families of distributions we obtain the following assertion as an immedi-
ate consequence of Theorem 1.

Corollary 1. For any class (F of distributions lim ¥, (1) = O holds if and
A+

only if

lim sup K(h) = 0.

h~+0 XEGF

In words, necessary and sufficient condition for a class of distributions

to satisfy a studentized Chebyshev inequality is that it consists of uniformly
smooth probability measures. As an example one can set the notable class
(F, of all unimodal distributions with mode O (a probability law belongs to
(o if the corresponding distribution function F(x) is convex for x<0 and
concave for x> 0).

Corollary 2. For X€(F,, A=n—1
4) P(|X| =2s, /Y n)=2"-1n7(A—(n—1))=¢+-D,

3. Further problems

Returning now to the properties listed under the formulation of the
classical Chebyshev inequality one can see that our estimation (3) becomes
meaningless as n— - and A remains fixed. This raises the problem of giving
estimates which are uniform in n. In general it is clearly impossible, because

Y n(X — u)fs, is asymptotically Gaussian if X has a finite variance, therefore

P(|X|>/1 s,/ n) keeps away from 1 as n— « if and only if 4,—Vn|u|/o re-
mains bounded from below.
The following extension of Theorem 1 is sharp in a certain sense.

12
Theorem 2. Let 2, = [k(n I)J k=1,2...,n=1)and A, = + .
Suppose Ay, <A=2,. Then for every 7 >1
P(X=3s,JYm)= 2 (N(1 -+ (g*) +
) "~

+7(@)(1- q*)""‘q"[K +[r*——————2}”“1 ]]k—l :
A= Ry
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From this theorem it follows that lim P(|X|=>2s,/{n) =0 if
lim [}t— Vn 1 9 )= + -.One can easily see that sup |y|/a=1—q——where the
n—eo — —q
supremum is taken for all probability distributions having finite variance
and satisfying max {P(X >0), P(X <0)} = ¢, thus Theorem 2 cannot be im-
proved significantly. However, our estimates seem rather rough e.g. for sym-

metric distributions. It would be of interest to describe those classes of distri-
butions for which lim sup ¥,(4) = 0 holds. The class (7 of all symmetric

n-—»oco

A+ n
unimodal distributions (also called bell-shaped) is expected to have this pro-
perty. Moreover, we conjecture that sup P(|X|=2s,/Yn) is attained for a
symmetric uniform distribution. The assumptlon of symmetry seems rele-
vant: the family (F,, of unimodal distributions with mode 0, expectation 0

and median O is still too large for this stronger version of the studentized
Chebyshev inequality (let the distribution of X be a mixture of uniform distri-

butions U[— —° , —e], U(—¢, 0) and U(0, 1) with weights e, %—s and

> resp., for a small positive ¢, and then let ¢ ~0).

4. Proofs

Proof of Theorem 1. First we give a geometric description of the subset
C of the sample space R which corresponds to the event {|X| >As,/yn}.
Replacing X with — X C remains unchanged, thus we can confine our atten-
tion to C+ = {X >1s,/Vn}.

Write 1(€R") for the vector with coordinates all equal to 1 and let
o (0=p<m/2) denote the angle of X = (Xj, ..., X,) and 1. Then

cosp = [n zn: X%]—m[i X] [ - s’/X”J—u2

i=1
i.e. C* is described by {cos p=>A(n—1+42)-1/2} or equivalently, by
{tan p <yn—1/4}. Hence C is a (double) cone of revolution with vertex 0 and
axis parallel to 1.

In order to estimate the probability of C* we cover it by a sequence of
hypercubes {fa/ < X,=pa/**, 1=i=n}, j€ Z, where « =1, >0 are appropriate
constants. This coverage is possible if and only if C*c{X,>0, 1=i=n}, i.e.
if tan p<(n—1)-V2in C*. Concerning A this means 2 >n— 1. Suppose XeC+
and define j by fa/i< 1min X;=pBoi*1, then max X, = Boi+* must hold, i.e.

=i=n Isi=n
max X;/min X;=«*~1in C*. We want to choose « as small as possible, there-
fore we need to find the supremum of max X,;/min X, in C*. To do this let us

fix max X; = M, min X; = m and try to minimize ¢, or equivalently, maxi-
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mize (2X,)?/2X?:. Let § = ZX,—(m+ M) denote the sum of the “free’” co-
ordinates, then

X3 =m?+ M2+ 8%(n—2),
hence
(m+ M+ S)? o, (m+M)?
m?+ M2+ S2(n—2) m?+ M?

and this upper bound is attained when the free coordinates are all equal to
(m2+ M?)[(m+ M). It follows by a simple computation that

(ZX)PNSXD) =

mmx‘<1+[n(n-l)+(2n(n—-l)/l’—ﬂ(n—l)z(" 2))Y2)/[A2—(n—1)3] =
max X,

2(n—1)
A—(n—=1)"

_g(n_—_l_ then

Let a=-! = 1+ )
l—(n—l)v

+ oo
P(XeCt)= 3 PY(Bal<X,=fol+7)=
J=—

= E Pr(log B+ jloga<log X; =log B+ jlog « +log a7, X; >0) =
j=—u
=[K*(log 7)]*~*H((log , log ),
where
4o
H(u,v) = > P(u+jv<logX,=u+(j+7)v,X,>0)
j=—

(— o <l<+o,0<V<+ ).
v
One can readily verify that_]' H(u,v)du = zvg*, thus for every v>0 u can

0
be chosen such that H(u, v)=zq*. Since
loga,':—tTlOg[l-*- 2("“1) J§‘[* 2("-1)
"—

A—(n—1) —(n—-1)’
we obtain
(6) P(XEC*)érq"[K*[ 7+ 12('(:’_1)1) ]]

from which the upper bound of (3) immediately follows.
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In order to get a lower estimate of P(X¢€C*) let us inscribe a hypercube
{m<X,=M, 1=i=n}into the cone C*. First we determine the supremum of
@ over the closure of the cube. Consider (£X,)?/(¥X?) again. One can easily
see that this expression is minimized at one of the vertices of the cube, i.e.
the minimum is equal to
) (Im+ (n—1)M)?

Im?+(n—)M?

for a certain integer /, 0<I/<n. Letting [ take on real values and minimizing
(7) in [ we obtain that

2 2) = dmM
(ZXPIZKD=n ol
hence if
M -
(8) F§1+2(n—1)}. Y+ +23(n—1))?] =

holds, the cube is contained entirely in C*. Thus

P(XeC+)=[K*(log g)]"%[K*[Q—;—l]]HE{K+[[1 +W’1i6]_”2]}". 0

Proof of Corollary 2. (4) will follow from (3) with 7 = n, 7* = ~—n—1 if
n—

we show that K(h)=h forevery Xc(F,. If 0<x<y, P(x<X=y)=q* [1—5-]
because of the unimodality at 0. Hence K*(h)=q*(1—e-*)=q*h and
K(m=h. O

Proof of Theorem 2. Suppose that C* contains a point X having exactly
k positive coordinates, say X, Xy, ..., Xy (k<n), Then

Sl 5 5 5

<[ Ma=D Y~
(1) |

Hence if 4,_; <A=A4,, every point of C* has at least k positive coordinates.
Parts of C+ consisting of points with more than k positive coordinates are
estimated simply by

thus

,>k[ ](1 —qt)i(gty
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the remaining parts of C* can be treated by projecting them onto the sub-
space spanned by the positive coordinates. The image thus obtained is a
cone of lower dimensions. Suppose X;, X,, ..., X, >0 and let

— k k —
X = 3 Xk, = 3 (X~ XPI(k—1).
i=1 i=1
— — 2 2
Then XeC* implies X, >ns, VK, where — - — k1" ;¢
n—1+2  k—1+n?

2 __ 1/2 2 __ 1/2

n =).[L] gl[ A1 ] . (k—1).
lﬁ —)»2 )»}2( _Z:ﬁ_l )’k—l

From Theorem 1 it follows that

P(X,>nsJVk) == [K+[r*___n?f’zk—_l>l) ]]él K[zl_)]

for every 7 =>1.
Now the proof can easily be completed. O
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