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1. Introduction. In the papers[1], [2] we have introduced an application
of the gradient method to the solution of boundary value problems involv-
ing a self-adjoint ordinary linear differential equation.

The problem is the following:

> K 4 cdu)
(1.1) Au = zo(—l) dx,‘[P,((x) dxk] f
(1.2) u(a) = w'(@) = ... = uN-9a) = u(b) = w'(b) = ... = uN-b) =0

where f€ Ly(1) is a given function, I = [a, b] and the functions Py, P,,... Py
satisfy the conditions

NP ()eCi), k=01...,N
(1.3) ii) P (x)=0 foreveryxel,k =0,1,...,N—1
iii) there exists a constant m= 0 such that for all
x€l, Py(x)=m.
Let us choose an arbitrary function wu,€ HY*N)(I) and assume that we have

obtained the (n— 1) approximation of the solution Ué€HI®N(I) of the
boundary value problem (1.1). Supposce we alrcady have
Upy Ugy e ooy Uy,

by introducing the notation
(]4) fn = Aun-‘.l _f

and at each step we solve the boundary value problem

(‘ : I)N_-_X.“ = fm

(1.5) V@)= V(a)=...=VN=Ig) = V()= V'(b)=...=VN=I(b)=0.
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Then we get the nth approximation of u
(1.6) u, = u,_+1,V,

where £, is defined by

b
[ v
(1.7) P S

N

b
JV®|2d
2, | paviors

From the above algorithm we obtain that the sequence (U,)e H}*N)(I) con-
verges to the solution u of the boundary value problem (1.1) in the norm

N-—-1
ully = max |u®| + ||utN|,
2
k=0 1

and the error is estimated by
(1.8) [, —u| =Ky, (n=20,1....)
K,=0is a constant, 0<¢g<1 [2].

2.1. Introducing a simple spline function to obtain some approximate
results. Practically it is not easy to use this method [2] to get the approxi-
mate solution for (1.1). So we are forced to use a simple spline function for
this purpose [4], [5], [6], [7]-

Our main purpose will be to study applications of simple spline functions
to the numerical solution of (1.1). We develop a method which produces a
smooth approximation to the solution U in the form of piecewise polynomial
functions of degree <r which are joined at points called knots which have
at least m continuous derivatives. If S is the spline function then it satisfies:

(2.1.1) SeCt(I), m-r.
(2.1.2)  S¢a, in each subinterval [x;, x,.;], 1=0,1, ..., (n=1)

where 7, denotes the set of all polynomials of degree<:r.
We define the knots by

(2.1.3) dia =xg<x,<...<x, = b,

n

and in our case we shall deal with equal subintervals and in this paper we
denote
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(2.1.4) h:=x.1—x, »=0,1,...,(m=-1),
o b-a
m
(2.1.5) Sii1, ) = Sopi(Gr,g), v=0,1,...(m—1),

where S, is a simple spline function interpolated on the mesh (2.1.3) which
gives the sets of points

(216) {(g()’gl’ T "g" ) gn)}’ {QO’gl’ ‘o ".’é"' T "gm}'
2.2, Some notations. a) in (1.7) assume that

(VEV)? = ga(6), (VI))i=x, = gal60),

(2.2.1)
v=0,1,...,(m—=1),m = gn,,.
Also
N ) _
Z PV HAX))? = ga(x),
(2.2.2) 0
Z PV EG))z=x, = 24(%) = &n,»
(2.2.3) Shn = fn, ,,+—gf-'1+—‘h:f‘i’i"<x—xv) = Sin(x, ).

Also we have
S n(X,7) = o nt PR — 8n (=) = Sun(,2), » = 0,1, ooy oym— 1.
(2.2.4)

b) Let w(h, g) and w(h, g) be the modulis of continuity of the functions g
and g respectively.

Lemma. The inequalitities
|g()SHx, )| =2w(h, ), =0,1,...,m—1,

b
- fsh. n(x’ gn)dx
a

<2w(h, g,)(b —a)

are ftrue. O
Proof.

18— S.(x, £)] = |g(x)— g0x) — g"‘—;—‘—g‘l) (x—x)| =

(2.25)  =|g(x)—g(x)| + ‘g(x”“)h‘g(x”)', y=0,1,...,m—1.

|g(X)—Sy(X, g)l SZW(h, g))
where w(h, g)~0 as m— .
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Also we have

b b i
i [ gn(0dx— [ s, ox. g)dx ‘ -

ia

i b
< [ 18,00 = 5,06, g ldx =
la

m—1 Jr+1

=2 | 160 =si.nx 9],

from (2.2.4) if follows
m—1 Tr+1

=2 | lg0—sunlxgldx=

x x
m—1 v+l m-1 vl

= j | g,(%) = Su, n(x, gp)|dx <= 2w(h, g,) > / dx
=0 X »=0 X

Then we get
| b

[ et = [ s, ,c,g)dx | <200, £,)- 0~ a)

a

(2.2.6)

From lemma (1) we can calculate the value of the integral

[ (v M)dx

in equation (1.7). From (2.2.1) we know that

b

b b
[ g.00dx = [ (VE))dx—~ [ s, x, godx.

But
_1 S+t m—1 v+1
fsh n(x gn)dx Z f Sh n(x gn)dx - ZO xf Sr, n(xr gn)dx =
[gv o B 2B x,)]dx -
v= 0 X,
(2.2.7)

m—

z{mnm_'“"z b -

hml

_ Z_: {(V(N)(x))‘ Xyt 1 +(V(N)(x))x X}
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Then we have from (2.2.6)

i b h m— 1
JVINGYx - 5 3 VN, (VVER-x)

=2(b - ayw(h, VIN(x)). i
Lemma 2. The following inequalities
|8(¥)=8.(x, 2] SZW(/I £

(2.2.8)

b

| 'e(x)dx - j S nlX% B )dx|<z (b—a)-w(h, g,)

are true. (]

Proof. The same as in Lemma 1. ]
We can prove that
(2.2.9) Z j P )\)(V“‘)) dx Z Q; v1,n g, n)!
= |

l_' a

From (1.7), (2.2.7), (2.2.8), (2.2.9) we can define £* as

fsh n X gn)dx
(2.2.10) t*(m) = SRR ,

b

J S a2

a
and we can prove that

Z {gn v +gn v+1}
(2.2.11) fm) = — 3=, n=12.... 0

m=1" ’
Z Hn, r +£’n, x'-{-l}

Lemma 3. The inequality
(2.2.12) |(m) —t,,| = Ky max {(w(h, g,), w(h, g,)}
is true, where K, is a constant. ]

Proof. Assume that
b

b
_ Y, S 2y
tn - 6! Y= j (V(N) 2dx, & Z“[ V”‘) d\,

a

b
tX(m) = —?»’-(-’";--, () = [ Sy alx, g)dx, 8(m) = [, o(x, B,

=2(b—a)w(h,g,).

127
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then
|t —t*(m)| :!_?___V(m) _ ly-8(m)—3d-y(m)]| =
o s a(m) 6 8(m)]
_ |8m)] -6 —b(m)| +|8(m)| - |&(m) 6]
18- 8(m)| '

From lemmas (1) and (2) we get

dw(h, g,) + yor(h, g,)

[f, —t¥m)| =- o -0 as m— .

Then for some constant K; we have
[t, —t¥(m)| = K. max{(w(h, g,), w(h, 9)}.

3.1. Application of the Gradient method to the approximate solution of
a boundary value problem of a self-adjoint ordinary differential equation. We
can apply the gradient method given in [2] to obtian a numerical solution of
(1.1) by using (1. 4), (1.5), (2.2.8), (2.2.9), (2.2.11) and the boundary condition

) (J)
(3.1.1) [d—v—] :[dﬂﬂl] 0, j=0,1,2,...2N—1.
dxj x=0 x=1

We can summarise the algorithm as follows:
f(x) is a given function in (1.1). Consider the interval I = [0, I].
Assume that u, = 0, from (1.4), (1.5) we have,

[i(0) = Auy—f(x) = —J(%),

aNy
(— ”WL&;;\% = [ix) = = f(x).
We can prove that
XEaN—1 &
3.12) V) = (=N [ [ [ fARMARY, . .. digy_gtay_s
00 0

From (2.2.10) we can prove that

m—1
2 8L+ 81,41}
v=0

tf= —7i ,
> g+ 81,041}
and then by (1.6) =

uf = uF+tvE uy =0, V, = V¥
By the same way we can calculate

(3.1.3) u¥,u¥, ..., u¥

n—1:
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Then the n-th approximation of the u solution of (1.1) is
(3.1.4) uf=ut_+tXv, V., =V}
where t¥ is given hy (2.2.11).

3.2. The convergence of the sequence (1%). In [2] we showed that the
sequence of approximations (u,) converges to the solution of (1.1) and the
error is estimated by (1.8).

For the sequence (1¥) we have [2]

[u(x) =¥ = |u(x) —u,(X)] + [u(x) —uk(x)| <
<Koq" + |uy(x) —ug(x)].
We can prove that

- ,
[un(x) —ug(x)] =" > {tw, — v} =

ly=1
=K, max {w(h, g,), w(h, g,)}
(3.1.5) |u(x) — k| = Koq" + K, max (w(h, g,), w(h, g,)}-

Then
u(x)—-uwktasn—-o,0<q<l, K, is constant.

The above results can be formulated in the following assertion.

Theorem. Consider the boundary value problem (1.1), (1.2). Let S, S be
simple spline functions (2.2.3), (2.2.4) interpolated on the mesh A:a = x,
<Xy<...<X, = b, (X,41—X, = h) to give the sets of points {g, g1, - - -, &n}>
{20, 81, - -, 8n)- Suppose we have obtained the (n— 1)t approximationof the
solution u of (1.1), as in [2],

u¥, u¥,... u¥_, by solving for each step the boundary value problem (1.5).
Then the n-th approximation of uis u¥ = u¥_, +t*V , where t} is defined
by (2.2.11).

T he sequence (1¥) converges to the solution u and the error is estimated by
3.1.5. O
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