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1. Introduction

The best known and most frequently quoted optimal stopping problem
is, without doubt, the secretary problem (also known as dowry, beauty con-
test or best choice problem), conceived as follows: n rankable candidates
applying for a job appear in random order. The object is to select the best
(rank 1), with maximal probability, under the following constraints:

— It must be decided immediately on arrival whether the candidate
is to be accepted or rejected, as later recall is not permitted.

— The only information that can be utilized in the selecting procedure
is the sequence of relative ranks with respect to the preceding arrivals.

This classical drafting appeared first in the Fifties or the early Sixties,
sce [4, 10], but a problem closely related to the above can be traced back to
Cayley, 1875. In that ancient problem the ohservations came from a known
distribution, thus the observed value contained further information in addi-
tion to the relative rank. This version is called the full information case while
the classical secretary problem is referred to as the no information case.

In the last two decades several versions, artful generalizations of the
original problem were considered. A recent survey paper [3] tries to give a
true cross-section of all related investigations, on the basis of more than 60
references. In fact, the number of relevant papers comes to 100, and one can
hardly ask a pertinent question that has not yet been invented.

Here we mention only two branches of the bush grown from the sceds
of the classical secretary problem. A natural idea is to allow more than one
trial for selecting the hest. In their paper [6], Gilbert and Mosteller solved
this problem in an intuitive way. The optimal stopping rule they obtained
was given by a sequence of threshold indices n=k¥=k¥=.... In the case
of r choices, the ith selection is made at the arrival of the first leader (relative
rank 1) after time k*_ | _, and after the (i — I) st selection, of course. Follow-
ing this stopping rule the limit of the probability of selecting the best
candidate (success) can be arbitrarily close to 1 as n— o, if r is large enough.
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The same problem was solved by Sakaguchi [21] using the method des-
cribed in [2], i.e. dealing with the Markov chain formed by the arrival times
of successive leaders.

Henke [8] and Nikolaev [14] aimed at minimizing the expected rank
sum of the chosen individuals. In [15, 20, 22, 23] two choices are allowed
in selecting the two best candidates. In [24], a slight modification of the above
problem is investigated: the ohject is to select one of the two best individuals.
Miiller and Platen solved the general problem of selecting the m best can-
didates [13, 14].

Motivated in particular by problems studied by Gilbert and Mosteller
[6], Haggstrom worked out the theoretical background of optimal sequential
procedures ir the case of more than one stop [7].

In a recent paper [11], the limit behaviour of the optimal stopping rule
is investigated in the case of several choices with an uncertainty of sclection.

Another direction of generalizations is to randomize the number of app-
licants. The first paper in this connection was that of Presman and Sonin
[17]. They let the number of candidates be a random variable with known
distribution {p;}. As they have proved, the optimal stopping rule selects
the first leader whose arrival time belongs to 17, a subset of the positive in-
tegers, which depends on the distribution {p;}. They also determined a class
of distributions for which the characteristic set I" was rather simple.

Gianini-Pettitt minimized the expected rank of the selected candidate
for certain distributions [5]. Petruccelli studied the problem in the case of a
general utility function [16]. The earlier papers [18, 19] concerning this case
were in part erroneous. In [9], Irle revisited the original problem of Presman
and Sonin. He applied Howard’s policy iteration method, based on a work of
Rasche.

The aim of the present paper is to join these two directions by giving a
common extension. In this respect, we refer to [25] where a special casc is
studied.

2. Results

We consider the probabilistic model described in [17]. We also accept
the notations used there. Instead of repeating the construction line by line,
we recall it with some explanatory words.

Let the number of candidates be denoted by ¢, a positive integer valued
random variable with distribution P(c = i) = p,, i = 1,2, .... Suppose all
the k! orderings of the applicants are equally probable under the condition
¢ = k. Let y, denote the relative rank of the k" arrival, i.e. if =k, let y, —1
be the number of earlier arrived persons better than the one under examina-
tion, otherwise let y,, = 4+ o hy definition. Denote by ¢ the arrival time of
the best candidate. We may have r choices. these being represented by the
stopping times 7,=7,= ... =7, with respect to the increasing sequence of
o-fields generated by the random variables y,, v,, .... Here 7, = 4+ = is
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allowed, indicating that less than [ choices are made, but r, | <7, is required
if the latter is finite. We aim at determining

sup P(r; = ¢forsomei =1,2,...,r)

where the supremum is taken over all r-tuplets of stopping times. We are also
interested in describing the optimal stopping rule.
We confine our attention to distributions for which
1 & p

J :I J

(M

P ] is non-increasing
ije=itl

(here g = 0 and for x>0 (\ = + = by definition).
)

This condition is shown to be satisfied in some important special cases
(uniform, Poisson, geometric distribution), see [17]. It is easy to prove that
each discrete IFR distribution, i.e. for which

pi. D p; isnon-increasing,
i=i

satisfies condition (1). A distribution with the property

.
Pi=EPi-1 Piv

is called doubly positive or discrete logarithmic concave. These distributions
constitute a proper subclass of the discrete IFR distributions. The three
examples considered hy Presman and Sonin all belong to this family.

Let £; denote the arrival time of the it" leader and let &, = + « if less
than i leaders are seen. That is, &, = I and

&= inf{m:ln')&—lvym = 1}'

Theorem 1. Suppose that the distribution of « satisfies condition (1).
Then the optimal stopping rule is similar to the one obtained by Gilbert and
Mosteller, i.e. there exists a sequence of threshold indices k¥=k¥=...=1 not
depending on r such that

y=inf{gg=>1_,, E=k*, ), [ =1,2,..,r

(where 7y = 0). O
In words, the I'" choice should fall on the first leader arriving at or after
the time k*,,_,.

Remark 1. The optimal strategy is not necessarily unique: it can happen
that more than one choice of the threshold indices gives the same success
probability. In this case the thresholds can be chosen from certain intervals,
independently of each other, but paying attention to the right order.

In the sequel we study the limit properties of the threshold sequence
and the success probability as the number of candidates tends stochastically
to infinity. Let the distribution of « be a function of a positive parameter 2.
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Suppose that i-1; converges, as 2 - <, to some (20 in distribution. The
following theorem deals with the properties of the limit distribution. Though
we shall not apply it in full, the result may be of independent interest.

Theorem 2. a) The distribution of v is either degenerate or it is absolutely
continuous inside H = (0, sup ess ¢).
b) The corresponding density functmn is of form

?) f(x) = Cr(x)exp[ / ()ds] X€H,

where r is a nonnegative increasing function on H, with r(+0) < 1.

¢) fis continuous in H except for countable many points which are dis-
continuities of the first kind, at these points f is locally increasing, i.c. f(x—0)=
= f(x)=f(x+0), further, f is differentiable u.e.

d) 11m Apuxy = f(x) if x belongs to the continuity set of f([.] stands for

integer part) O

Remark 2. As will be seen from the proof,

r(x) = f(x)/f T0) 4

In the sequel, we assume that the set where r(x) = 1 is either void or
it contains not more than one point. This condition assures the uniqueness
of the optimal stopping rule, at least in the limit.

Denote by P*(Z) the maximal probability of success achieved by r
choices and write k¥(2), i = 1,2, ..., for the threshold sequence of the opti-
mal stopping rule in order to indicate the dependence on 2.

Theorem 3.
a) lim A-k¥(2) = xf

Ao
where {x}} is a strictly decreasing sequence of positive real numbers tending to 0.
b) The numbers xjf are determined by the recursion

= 1 I K+1=] [(* = = x*
® )= A T Bl g =esxg)-
- Z_._--__(m xHyer1- !E[l 1(L>x*)]
(k+1=)) C

where
1,(x) = E[i— [1 +In %]I(L . x)]

and 1(.) denotes the indicator of the event in. O
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Remark 3. A more compact form of the defining relation of the sequence
{x}} is the following identity

(4) ].21 ﬂ_l.E : . ](1 >x3")(x>/kt_(l _t)lt)}EO, |t| -1

Especially, in the case of degenerate limit distribution =1, we obtain
an identity known from [11]

Szl <1,
j=1

Theorem 4.
) P¥ = }im P*2) = Z E[ J ](L>X*)]
b) limP* = P(t=0). 0O

r— oo

Remark 4. If we allow r(x) to take the value 1 on a complete interval,
then it is not sure that equation (3) can be solved uniquely and part a) of
Theorem 3 should be replaced by the following assertion:

Every limit point (xf, x3, ...) of the sequence 2-'(k¥(2), k*(A), .
satisfies (3). The converse is not necessanly true, but for every (x¥, x¥, ...)
satisfying (3) and for every £=0, there exists a sequence of e-optimal stop-
ping rules of the type described in Theorem 1 along which

otk ) = x¥, i=1,2,....

A+ o

3. Proofs

Proof of Theorem 1. We apply Dynkin’s method of Markov chains.
Our problem can easily be reduced to the problem of optimal stopping the
special Markov chain &, i = 1, 2, ..., where the reward function g(k) is
defined as the conditional probability of success, when the first choice is
made at the ktt arrival, supposing he is a leader. This reduction is described in
[17]for = 1 and it can be done in the same way for [>1.

Denote by s,(k), the conditional probability of selecting the best when
1o choice is made before the kth arrival, supposing again that he is a leader.
Then

aw=k3"/5p,

and
(5) (k) = (k) + >, plklj)si-1(J)s

j=k+1
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wliere p (k|j) denotes the transition probability

k ZP"
=]

PG = jle = k)= —"7 . =k
iG-S p,
Further, !
(6) s,(k):max{g,(k), S p(kij)sl(j)}
j=k+1

and s,(1) gives the success probability.

The characteristic set of the optimal policy is 1", = {k: s(k) = g/(k)}.
More precisely, if the two terms on the right hand side of (6) are equal for
a positive integer k, then [, is not unique in the sense that k& may be left
out. In order to clear up the structure of /7, we apply Theorem 3.1 and the
Lemma of [17].

First we have to introduce some new notations,

l oo
G(k)y = -g(k) D' p;
k j=k
. I <
Sik) = K s(k) X p;.
, “
Defining the operator T as
oo { ]
riw = 3 D,
j=k
we can rewrite (5) and (6) as
™ Gi(k) = Gy(k)+ TS, (k)
Sy(k) = max {G,(k), TS,(k)}.
Let ¢, , = G(k)—TG(k), ¢, = ¢, 4. Invirtue of the quoted results of Pres-
man and Sonin, a sufficient condition for /', to be of form [k, <) is that the
sequence ¢, ,, k = 1,2, ... benegative and increasing if k</* and nonnegati-
ve if k=kF. (If ¢, , = O for ke [k, m—1] and ¢, ,,>0, then we can choose
I', = [k, + o) for any k€ [k}, m], as well.
We show that this condition is fulfilled, with k¥=k¥=.... Since
lim ¢, , = 0 and by (7)
[P
€= Cper = GR)=G(k+ 1)=TG (k) + TG(k+ 1) =
k
= G(k)— _.:5-".(;,(/‘»r Iy =

k+1 k+1
= G(k) = Galle 1)+ TS, (k) = 5 TS,y (k+1) =
1
= (le—ck+1)+_k_(sl—-1(k)_TSI—l(k+ 1)) =

|
= (k= Crp) + k ks
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we obtain the recursion
> — +
=t Tely

where x* = max {x, 0}.
From hypothesis (1), it follows that the sequence

< P [ p,-J
®) k Z‘« i [1 pi j;;rl i
possesses the required property (for this expression of ¢, see (3.6) of [17]).
Now the proof is inductive over the number of choices. Suppose we have car-
ried out the proof in the case of /—1 choices. Then for k=k%_, ¢, increases
and Tcf, , does not vary, thus ¢, , increases as well. Clearly, ¢, ,=¢,—; 4,
hence ¢, K, =0, consequently k¥ =k*_, and the proof is complete. (]

Proof of Theorem 2. From (1), it follows that for i=j=k=!

1 . |
pRE[ (TR 1)] = piE[--—l(L;, > 1)],
L) 2]
thus
Pk<u=k+r) P(j<u=j+4d)
9) i = T
rE[ (> k +r)] dE[ (= j)]
L2 2

if j+d=k+rand j=I[ Hence we obtain

Ply<it=y+o) _ Plx=i1=x+36)

QE[ -1----1(L> y+g)] B aE[ 1--1(L>x)]

for O<x=y, x+0=y+p€H.
This implies a) immediately, further fis locally bounded in H, and with

the notation @(x) = —l—f(s)ds the quotient f(x)/®(x) = r(x) is an increas-
s

ing function of x. From this fact (2) follows by easy computation. Obviously

X

f(x)=Cr(+0)exp [ _ / ..r(.?;_plds] = C'x-r+o),

thus r(+0) <1 by the integrability of f.
Part c) is a simple consequence of b).

Finally, using (9), one can see that for arbitrary x¢ H Appx remains
bounded as 21— -, thus any subsequence of 2 contains a further subsequence
along which Appx converges for every xcQN H. Let us denote the limit by
g(x), further let g(x) = lim inf Appx, g(x) = lim sup Appux), where A runs

7 ANNALES Sectio Computatorica — Tomus V.
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over this latter subsequence. From (9) it follows that the difference quotients
of g and g are bounded from below in every compact subinterval of H, hence
both g and g satisfy c. Since g = g in a densc subset of H, we have g = g at
every common continuity point. Thus /pp. converges to a limit g(x) at every
continuity point x¢€ H, along the underlying subsequence of /. Using Theo-
rem 7.8 of [1] and the tightness of the sequence 7—1, we obtainf =g a.e,,
and, again by property c), f = g at the continuity points. M

Proof of Theorem 3. a) We deal first with the case of one choice. In a
sense our assertion is related to Theorem 4.1 of [17], wich states convergence
with a rate A-! under conditions of another type. Consider the function
Ii(x, 2) = Acpxp, x=>0. Then k¥F(2) = inf {x=0: I)(x, 2)=0}. According to
(4.1) of [17], we can rewrite I,(x, 2) in the form

had ; i-1
L) =7 >, p{l_ > J=

i=[ix] 1 j= [:q ]

HE S =)

La <0 J
Applying Theorem 5.5 of [1], one can see that

(10) lim I,(x, 2) = [ i [l—ln ]l(t>x)] = 1,(%)

H

Il

A oo
if x is a ¢-continuity point, i.e. P(t = x) = 0, thus (10) holds for every
x€H. Moreover, the convergence is uniform in every compact subset of H.
By an easy computation, we obtain

dx |

d1,(0) = [ l<z>x>]———du )

where F denotes the distribution function of (. Hence I;(x) is absolutely
continuous in H with derivative

f(x)[ S 1] if 7(x)=0
gy _| ¥ 110
dx 1y1
E[-— ]--- it r()=0.
L) x
Next we show that fll(x) dx = 0.ForO<a<b
H

fbl,(x)dx - E[fb% [1 +mf]1(t>x)dx] -

= E[l T b)] —E [-‘-l- n 1= a)]

L 2

(11)

which tends to 0 as a—~0 and b -~ «~, by the dominated convergence theorem.
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These results together imply that the equation /,(x) = 0 has a unique
solution in H; derote it by x¥. By the monotony of I,(x, 2) when being
negative, it follows that A-tk¥(1) —-x¥.

Passing over to the case of more choices, let us define the functions
I(x), I = 2,3, ..., recursively.

o

(12) 1) = 1,() + f L1t oy, x=0.
y

x

We show by induction over the number of choices that I,(x) is well defined
and it has a unique root xj} in H. Similarly to the case of one choice, one
can prove that [,(x, 2) = Ac,x converges to I(x) uniformly in every
compact subset of H, further lim 2-14¥(%) = xf. First, in virtue of (11)

b
N . 1
lim j I (x)dx = lim E[ - In b I(L>b)] = =
b~0 b b-+0 L i
¥)
by the monotone convergence theorem, hence lim /(x) = — == Keeping in

x+~+0
mind the monotony of /, in (0, x¥), we have to prove that

o

f—l IT(x)dx <o, [ =1,2,....
X
0

Starting from the supposition for /, we can write

oo oo

/ l--1{*()()(13(5~l-[l,+(x)dx
X xf

0 0
/lﬁ(x)z1x§f]f(x)¢1x+-// ! I (y)dydx =
0 [ 0 x y
=/l,+(x)dx+/f L i(dxdy =

y
(V]

0

and

= flf(x)dx+fl,*_,(x)dx§ .. .§If I (x)dx.
0 0 0

Thus 1;,, is also well defined and obviously x*,,<x}, since [,(x)</,,,(X).
Finally, x} -0 will follow from part a) of Theorem 4.

T*
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b) Let x}=x=x*%_, (where x§ = sup ess () and

Tt x) = 3 6-H1,().
=k
Then
0 1, t
STt x) = - i) — —Ty(t, ).
X I—t X

[¢

Solving this differential equation, we get

*

T == - o=

_ x—‘[xk(t) - -:—E(Lf—l I~ x))] Y 1_-55[%1@ - x)].

The functions x,(f) can be determined by substituting x = x%_,. Clearly
T st X% —1) = 1T (X%—1) + [i—a(X—y) = T (%),

implying the recursion
I=te i % Xely o 1 *
(13)  t,(f) = 24 (H) — . E( ](L>X,(_1))+“~t~ ~E - I(e=x%_))]

The value of x,(f) is obtained by calculating Ty(f, x) directly. From (12), it

follows that
]
1(x) = E{ 3[1 - 1-[m ‘_] ]I(L>x)}
t ! X

for xF=x<xg, thus

T =

hence x,(t) = 0. Now (13) gives

w(t) = kjltf—k—lE[il(L = xRk — (1 —t)f)
j=1 L

and
k—1
Ty x) = 15 > 61 E[—I-I(L — xR (cK — (1 — t)L‘)] +
= :

(14) | |
+}ZF—T)E[T](L = x) (x! — (1 —t)u)].

In (14), the coefficients of negative powers of { must vanish. Since k is ar-
bitrary, (4) follows immediately, expanding it in a power series in f, we
arrive at (3). O
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Proof of Theorem 4. a) Since S,(k) = TS/(k) holds for k<kf, we also
have (k—DS(k—1) = (k— DTS, (k—1) = S;(k)+ (k— 1)TS,(k) = kS,(k) for
k<k¥. Thus

P*3) = s,(1) = S(1) = (kX = 1)S,(k¥—1) = (k¥ — DTS, (k¥ — 1) =
= (k¥ = DTGk} = 1) = (k¥ = (G (kF = 1) —r, 15 -1).
From (7) it follows that
(k¥ = G (k¥ — 1) = (k¥ = 1)Gy(k¥* — 1) + (k¥ — DTS, _y(k¥ — 1) =
= (kF = DG, (k¥ = 1)+ P7_,(2),

hence
(15) Pr2) = > (k] = I)Gy(kF — 1) —¢, K1)
j=1

Returning to (8), one can see that

< Pi 1

Gl(k) = —_ = E[—-I(uék)]

i=k Ly

Let 2— « in (15). Since lim Cjof—1 = 1(x¥) = 0O, assertion a) follows imme-

A-» oo

diately.
b) Rewrite (4) in the form

oo

D R ) e (]
= ¢

j=1
and let f tend to 1 from below. Then

oo

Z E[? I(.> x;-“)] = 121 P(x¥ <i=xf_y) = P(t=0).

j=1
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