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In [1] a general necessary condition for smooth-convex problems was
proved. In the present paper we consider a more general problem in which
an infinite number of inequality constraints is given. The proof of the corres-
ponding nccessary condition needs essential modifications at several points
while some parts can be adapted from [1]. For the reader’s convenience we
include a complete proof [2, 3].

Let X and Y be real Banach spaces, let U be an arbitrary set, let
[ XXU~I=f=fo,f1 -+ [ --.)and F:X X U~ Y be arbitrary functions.

We consider the problem:

(1) Jo(x, u)—inf,
2) (x, 0)eXx U,
3) F(x, u) =0,
6] fi(x, u)=0, (i€N).

Problem (1)—(4) will be called smooth-convex problen at a point
(xy, )X xU, if

A) the point (x,, u,) satisfies conditions (2)—(4),

B) forevery ucU, the functions xi—F(x, u) (x€ X) and x|—f(x, u) (x€ X)
belong to the class C, at the point x,€X: and exists a K=0 such that for
every (€N, ue¢ U we have

(e <K and 10, (%, )l <K,

C) there exists a neighbourhood k(x,)c X of x, € X such that for every
x€k(x,) the functions w—F(x, u) (ueU) and ul—f(x, u) (u€U) satisfy the
following convexity condition: for every u!, u?c€U and arbitrary «€[0, 1]
there exists a u€ U such that

F(x, u) = «F(x, ut)+ (I —a) F(x, u?),

Ji06 iy =af (6, 1)+ (1 =) fi(x, u2), (i€Ny).
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We shall be concerned with necessary conditions for a local minimum in
the problem (1)—(4) in the following sense:

We shall say that a point (x,, u,)€X XU is a local minimum point of
the problem (1)—(4) if there exists neighbourhood k(x,)c X such that for
every (x, u)€k(x,)x U which satisfies constraints (2)—(4), the inequality

Jo(Xs uy)=fo(x, u)
holds.

We consider the Lagrange function of the problem (1)—(4):
L: XXUXIZXY*~R,

L(x, u, 4, y*):= (%, J(x, u))+ ¥, Fx, u)).

Theorem (necessary conditions for smooth-convex extremum problems).
Suppose that

a) (1)—(4) is a smooth-convex problem at the point (x,, u,)€ X XU,

b) the range of the operator 9,F(x,, u,):X—Y is finite codimensional
and closed in Y,

) (X4, uy) is a local minimum point of the problem (1)—(4), then there
exists a finitely additive nonnegative measure A€l¥ and a y*€Y* (Lagrange
multipliers ), for which 0 = (2, y*) on the following statements hold :

®) 01L (X Uy Ay Y¥) = 01/ * (X, Ug)A + 01 F*(Xy, uy)y* = 0,
(6) L(X gy Ugy A, V*) = min L(x,, u, A, v¥),

and for any set AcCN “o

) Af f(xy, t0,)dA = 0.

(In particular: for ieN A({i}) fi(xy, 1) = 0.) O

Proof. We shall use the following notations:
Lo: = Ry Fixe,un< Y,
B: = L,+F(x,, U)CY,
L:=cllinB.

Then 1. L=Y, or

2. a) L =Y and 04 int B, or

b) L =Y and O¢ int B.

Case 1. Assume that L= Y. Then, by the Hahn-Banach theorem, there
exists a non-zero functional y*¢€ Y* which belongs to the annihilator of the
space L. Since Bc L and for all x¢ X, ucU

0. F(xy, u)x+ F(x,, u)€B,
hence

() ¥, OF (ty, ) X+ F(xy, 1)) = 0.
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In particular, it follows for w:=u, (since F(x,, u,) =0) that
Yy 01F (X, g )x) = 0 for all x€ X, i.e.,

) 0 F*(xy, ug)y* = 0.
On the other hand, for x = 0 and all u€e U from (8) we get
(10) O*, F(xy, u)) = (7%, F(xy, uy)) = 0.

Setting 4:=0¢€[%, from (9) and (10) we obtain the relations (5)— (7). Thus,
the assertion of the Theorem holds in this case.

Case 2. a) L = Y. We shall show that then int B>0. Indeed, since co-
dim Ly< o, the factor space Y/L, is finite-dimensional. We denote by
m:Y ~Y/[L, the canonical mapping. Since the closed linear hull of the set
a(B) coincides with Y, the linear hull of the set z(B) coincides with Y/L,.
Obviously F(x,, U)c Y is a convex set; L, is a subspace, so their algebraic
sum (the set B) is convex. Therefore, the set z(B) is also convex.

Since F(x,, u,) =0, we have Oc¢a(B). Thus aff =(B) = lin a(B) =
= Y/L,. Hence int =(B)=0.

Since = is a continuous mapping, and

n“l(n(B)) = B,

we obtain that int B=0.

Assume now that 0¢ int B. By the separation theorem, there exists a
non-zero functional y*€ Y*, which separates the set Bc Y and the point

0€Y, ie.
* =0
for all y¢ B. This means that
<y*’ aIF(X*’ ll*)X+F(X*, ll)>20
for all xe X and u€c U. Setting in this inequality u: =, we obtain
¥, 0 F(xy, u)x)=0
for all x¢ X, from which
01 F*(xy, uy) y* = 0.
Put x:=0, then
(_,V*, F(x*) ”)\/ZO = <,V*: F(x*r “*)‘/\
holds for all ue U. Thus, in this case, as in the preceding one, i:=0€I[%, and
y* are the required Lagrange multipliers.
b) Finally, we assume that
L=Y and Ocint B.
Define
S = {{eN|/fi(xy, uy) = O}
If S is finite, the proof coincides with that of [1]. Assume that S is infinite.
Further let S:=S U {0}.
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We consider the set Ccl.(S)X Y of all vectors (u, ¥)€l.(S)x Y for
each of which there exists ax¢€ X and a u€ U such that

1> 00 f Xy W)X A [ (X, 1) — f (X Uye) (ieg),
Y = 01F (X, u X+ F(Xy, 1) = F(Xy, ),

where u: = (u,)ics.
For the proof of the assertion of the theorem it is enough to verify that

(11" the set C is convex,
(11 int C=0,
(11 0¢int C.

Indeed, by the separation theorem there exists a non-zero functional
(2, y¥)€IE(S) X Y* such that for all (1, v)eC

(12) Gy 1+ v, yy=0.

The A€l%(S) can not be negative finitelly additive measure. Indeed, if
there is a set AcS, 2(A)<0, then let («?, y")€C be such that pf =0 (i€.S5).
Further, forevery a€ |1, + ~ [ define

. aul, it €A,
o @, if  i€S\A.
Obviously (u*, y*)€C and

Gy )+ (%, Y0 = A/y“d/l + j widi 4+ (vE V) =
A S\A
=a f,u"d;t+ f wldAd 4+ (v*, y°).
A s\a

Since j.[ll‘)11).<(), there is an o> 1 such that
A
a [wdr+ [ podr+ v+, 0y -0,
A s\ A

which contradicts inequality (12).
For arbitrary xe X and u¢ U define the sequences

,
N

(l‘f‘)kﬁnl=[alft(-\'»;nll*)x+fi(x$»“)—f,(-\'*»ll:z:)"' jJ . (i<S).
keN

Obviously, for k€N with p*: = (uf)ies€1.(S), and y: = 9,F(x,, t1,)x+
F(x,, u)— F(x,, u,)
(u*, y)€C,
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therefore by (12)
(2 1)+ (v*, y)=0, (kEN).

But 1im (u¥)en = (01S (X4, U)X +fi(Xy, 1) —fi(Xy, U14))ies and the (4, y*)€
€(l. X Y)* continuous, therefore (12) is true for the limit of the sequence
(¥, Y)ken i.e.

f(é)lfi(x*, W)X+ fil(Xgy 1) = Xy U5))icsdA +

S

(12 .
) + V¥, 0, F (Xy, Uy )x + F(xy, u) — F(xy, uy))=0.
Let 2€lZ(N) be an extension of the functional A€%(S) such that for
an arbitrary AcNy\S A(A) = 0.
In terms of the Lagrange function, the inequality (12”) means the follo-
wing:

(127) 01-L(xy, Uy 2y YN+ LU(xy, U, 2y V) — LUXg, Uy, 2, VF) =0
If xe X then —xe X, therefore (127) satisfies only if
0 L(Xy, ty, 2, ¥%) = 0.

This is assertion (5) of the theorem.
Hence, by (127) for every ue U

L(xy, 11, A V¥)— L(Xy, Uy, 2, Y¥)=0.

This means that inequality (6) is satisfied in the Theorem.

By the definition of 2¢%(N,) the requirement (7) is fulfilled.

Hence in order to prove the theorem it is sufficient to verify (117), (11”)
and (117).

The set C is, obviously, convex.

Now we shall prove that int C#@. Since O¢int B, therefore O¢int (B).
The space Y/L, is finite-dimensional. Thus there exists a finite number of
points 2y, 2, . . ., 2, of 2(B) whose linear hull coincides with Y /L, such that
U+t .. 47, =

Since z;€a(B) (j =1, 2, ..., m), there exists a u;eU such that
a(F(x*, u;)) = z;, and by the linearity of =,

:r[ > F(Xy u_,)] = 0.
(=1

Set
Co- = ] sup {fi(xss uj)—fi(x*v uy) + 110, f (X0 t)ll}
=jzm
ics
Ug ={ueU|30;=0, I=j=m, > a;=1 suchthat F(x,,u) =
j=1

m m —
= D o F (X, ), [i(Xg )= D aif (x4, 1), i€S}h
iz

=
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(From requirements B) and C) of the smooth-convex problem it follows that
Co<+ o and Uy=0.)

In addition put

By: ={yeY|3xck(0)and uc Uysuchthat y = 0, F(xy, ue)x + F(xy, u)}.
It is easy to prove that B, is convex.

Since z;€a(F(xy, Up)) (j =1, ..., m), we have

linz(F(Xq, Uy)) = YL,

It is not hard to see that
OE:Z(F(X*, Uy)),

thus
aff :z(F(x*, Uy)) = lina(F(x, Uy)) = Y/L,.
Therefore
int n(F(X*, UO))yéﬂ
moreover

int (Lo+ F(xy, Ug))=0.

On the other hand 9,F(x,, U,k (0) is open in L,. Hence we obtain
int B,=0.
We set the half-line E;:= {u€R|u>c,} and let

Cy: = (z<§ Ee) X By

The set X E.,c[.(S)is open and int B, =@, therefore
i€S
int C,=0.

We shall prove that Coc C. Indeed, let (i, y)€C,. This means that for
every i€S u,>c¢, and y€B,. Since ye€B,, there exist x€k,(0) and ucU,
such that y = 0,F(xy, uy)x+ F(x,, u). But k(0)c X and U,c U, therefore
¥ can be a second component of an element of C. Hence, it is sufficient to
verify that

;> 01f (Xer U)X + [ (X, U) =[xy 1) (i € §)

m
Since uc U,, there are &jzo,j = 1,2, ..., m,such that Z &j = | and

j=1
[l )= S5, (x 1)  (Q€S).
=1
Then !
01f {(Xser U)X + [ (X 1) = [ i(Xr 103) =10 F (X, 1) +
+ max {f(xXy, u;)— fi(%y U*)}slitﬁspm {100f (X )l +

I=j=m
icS

[l u)) = filXg ug)} = €o=< i



Hence (g, y)€C, i.e. Coc C. Summing up, int Cy=f and C,cC, there-
fore int C#0, i.e. proposition (11”") is proved.

Finally, we shall prove O¢int C. Let us assume that this is false, namely
there exists a neighbourhood k2s(0)c[.(S)X Y with kxs(0)cC. Let

pi:=—0(€S)and u: = (u,)ics. Obviously (u, 0)€C. From the last rela-
tion it follows that there exist x,€ X and 1,€ U such that

(13) — 8= 01 (X U )Xo+ [ (X Ulg) = [ (Ko U1y)  (I€S)

and

(14) 0 = 0,F (X4, Ug)Xo+ F(Xy, tg) — F(xy, Uy).

Let us fix e>=0 and consider the following function:
(F: XXRmM*1Y
Xy gy ayy -y o)t = F(g + X, 1) + oo F(Xg + X, Ug) — F (x4 + X, 11)) +

m
+e D) a(F(Xu+X, 1)) = F(Xy +X, uy)).
j=1

By the smoothness conditions there exists a neighbourhood k(x,)c X such
that at every point (X, ag, a5, ..., @,)€(k(xs)—X,) X R+ the function
F is differentiable, (F’ is continuous at the point (0,0, ..., 0)e X XR™*?
and

F0,0, ..., 0)(X, &gy 0y - - -y &py) = O F (Xyy Ug)x +
13) + ag(F(xy, o) — F (x4, 14)) +

+e % o (F (X 1) — F (X Uy))-
j=1

The function (F has the following properties
1. (70,0, ..., 0) = 0, indeed,

(F(0,0, ..., 0) = F(xy, ug) = 0.
2. Rz ,0,...,00=Y.

First, we shall prove Rz, o, .... 0y B,. For all y € B, there exist x€k,(0)c
c X and ucU, such that

Y = 01F (X 14)x + F(Xy, ).
m
Since u€ U, there exist numbers o ;=0 (j = 1, ..., m), Da;=1, such
j=1
that
—_— m -—
F(xy,u) = > a;F(xy, uy).

j=1
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Then, forx: =X, a,:=0,2;:= = (=1,...,m)

TF0,0, ..., 0)(x, g %gy ooy 2,) = O1F (X, U)X F
m

+0- (F(X*, ”0) - F(X*, ”*)) +e Z ZJ(F(\*’ ”j) — F(xy ”*)) =¥

j=1
that is y€ R0, 0, ..., 0)- Since int By =0,
Rz ,0,..,0 =Y.
3. There exists an x”’€ X such that
F0,0, ..., 0)(xg+ex, 1,1, .. 1) =0.

Indeed, by (14)

S B )€ Ly = Royriea v

j=1

therefore there exists a (- x")¢ X such that

(16) > F(xgu)) = —0,F(xy, )X
j=1
By (15) !
F(0,0, .. .,0)(xg+ex’, 1, .., 1) = 0, F(xy, t) (X +ex’) +
+ F(xy o) = F (X t1g) + & D7 (F(xy 11)) = Fxy, 1)) =
=

m
= 01 F(xy, Ug)Xo+ F(Xy, t1y) + s[alF(x*, ugx’ + > F(xy, uj)].
j=1

The sum ot the first two terms is equal to zero by (14) and the sum in the
brackets also equals to zero by (16). Hence the vector (x,+ex’, 1, ..., )€ X X
X R™+*1 belongs to the kernel of the operator (#'(0,0, ..., 0)

The function (F satisfies the conditions of Ljusternik theorem at the
point (0,0, ..., 0)e X X R™*1 therefore the tangent space of the set

M = {(x’ 010,0.1, ] (l,,.l)EXXRn7+1|\-f(X, 0(0, S TR Otm) = 0}
is equal to the kernel of the operator . 7#(0, 0, ..., 0), i.c.
TM(@,0, ..., 0) = Ker (#(0,0, ..., 0).

Then there exists an e,=0 (generally speaking, depends on ¢) and a

function
[—eo g0] 21—~ (;C(l), &o(t), a(t), - .., &m(t)) €eXXRMiL

lim[t|—> oI+ S 15 j(t)|] o,
0 j=1
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for which at all point te[—e¢,, ¢,] we have
(0,0, ..., 0)+t(xy+ex’, 1, ..., ) +H(X(t), 2(1), - - -, a, () €M,

that is

F(Hxy + X+ XWO), 11+ 7(D)), - - -, 11+ %, (1)) = O.

This result holds for all e=0. _
We now choose an =0 such that for every i€S

E;Iaxfr(x*' 1y )x" + i [f (s ll,')—fi(x*, )] l <-3—-
j=1 i

holds.
Now, we consider the functions for all i €.S

g, XXR"1»R
Gi(X o, 2y, 2) = LG, )4

+ oo([ilXs + X, 110) = [i(Xs + X, Uy)) + & 12'1: @i+ X, 1))~ [i(Xg X, )]
f=y

Obviously,
So(xe tty), if =0

1(0,0, ..., 0) =
8l ) { 0, if €S,

the functions g; (i € S) are continuously differentiable at the point (0,0, ..., 0)
and
g;(or O» ct O) (X, Xy Xyy « - oy a’m) = alfi(x*’ ll*)X-l-

m

+ o[ i ) — [1(Xer U1y)) + & Z “j[fi(x*» ”j)—fi(x*’ )]

j=1
By the choice of ¢, from (13) and (16) it follows
10,0, ...,0)xg+ex’, 1, ..., 1) = 01S {(Xg, tg)Xg + [i(Xs, o) — [i(Xs, Ug) +

(17) + s[a, F it X+ 5 [ 1) — u*)]] -
=

~ 8482 = —82  (i€S).

By the Lagrange mean-value theoremn there exists a vector (&, 8j, 9%, . ..
#1 )€ X X R™+1 (depending on f), for which

gt + ex’ +X(1)), 11 +agd)), - - -, (1 +3,(1))) =
=g/0,0,...,0)+1g/(&, 8, 0%, . . ., B )Xo+ &X' +X(1), 1 +ag(t), - . ., 1 +a,(F))
for all t€[—e,, 5] and i€S.
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It is easy to see from (17) that there exists a =0 such that for every
te]0, y[

GUEL B, B, DL+ X X0, T+ agt), . -, L+ an() < “2“
also holds. From this we obtain

gi(t(xo+ X + X)), 1(1 +2(1)), - - -, ({1 + 5, (1)) <

(18) 5
<g,~(0,0,...,0)—t»§-, te]0,y[, i€S.

Define the function
10, [3t 1= x(f) : = X +1(xo+ X" +X(f)) € X.

Obviously, lim (fi—x(f)) = 0. We can assume that y>0 is sufficiently
0

small. Then all £€ |0, y[ satisfy

m

t[l Lo +e S (1 +é.z).(t))]s 1

=1
[ +3(f)=0, 1 +a(f)=0, ..., 1 +a,(f)=0.

For such £€]0, y[, according to the condition C) of the smooth-convex
problem, there exists an element u(f)€ U such that the following relations
hold:

F(x(t), u(t)) :[1 (14 (D) — et 2 (1+a j(t))]F(x(t), 1) +
P+ ) F ), ) + et 3 (1 +5(0) Fx(O), 1)) =
j=1
= GF(t(xo+ ex’ + X)), t(1 +&o0)), 1(1 +3,(1)), - - -, 11 +5n(1))) = O,

Ji(x(), ”(t))S[l — (1 +24(f)) — et i (1+ aj(t))]fi(x(t):u*) +
=

(1 + 5o (X(O), 1) +et 5 (1+3 0)f(x(t), 1) =
=

= (o +ex’ + X)), t(1 + % 0), (1 + &), - -, 11 + () (P€S).
From these relations and from (18) it follows that, for every t€]0, y[
Jo(x(®), u(®)) <fo(x, 114),
F(x(t), u(t)) = 0
fi(x(), u(t)) <0, i€S.
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Finally, it is obvious that
ling sup (t I— fi(x(?), u(t)))sf,.(x*, Uy)<0

for ieN\S. Thus, if at€]0, y[, then (x(t), u(t))€ XX U is an admissible ele-
ment of our problem, but f,(x(f), u(t)) <fo(Xx, tx). This means that the point
(x4, Uy4) cannot be a local minimum point. It is a contradiction. Therefore,
the assumption O€int C was false, and the relation (11””") holds.

The theorem has been proved. (7

[ wish to thank A. Késa and Z. Varga for helpful criticisms and sugges-
tions.
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